Synthesis 2018; 50(07): 1560-1568
DOI: 10.1055/s-0036-1591746
paper
© Georg Thieme Verlag Stuttgart · New York

C-Glycosylation of Substituted β-Naphthols with Trichloroacet­imidate Glycosyl Donors

Soumen Chakraborty
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India   Email: dmal@chem.iitkgp.ernet.in
,
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India   Email: dmal@chem.iitkgp.ernet.in
› Author Affiliations
Further Information

Publication History

Received: 18 October 2017

Accepted after revision: 01 December 2017

Publication Date:
03 January 2018 (online)


Abstract

Several glycosyl donors have been systematically investigated for C-glycosylation of substituted β-naphthols to delineate the effect of the substituents. Whereas glycosylations of the parent 2-naphthol are smoothly achievable, those of differently substituted 2-naphthols are cumbersome. Efficiency of the glycosylation depends on the nature of both the glycosyl donors and the substituents of the arene ring. Among various glycosyl donors, trichloroacetimidate glycosyl donors are found to be superior for glycosylation with substituted 2-naphthols.

Supporting Information

 
  • References

    • 2a Hauser FM. Chakrapani S. Ellenberger WP. J. Org. Chem. 1991; 56: 5248
    • 2b Kusumi S. Tomono S. Okuzawa S. Kaneko E. Ueda T. Sasaki K. Toshima K. J. Am. Chem. Soc. 2013; 135: 15909
    • 2c Hosoya T. Takashiro E. Matsumoto T. Suzuki K. J. Am. Chem. Soc. 1994; 116: 1004
    • 2d O’Keefe BM. Mans DM. Kaelin JrD. A. Martin SF. J. Am. Chem. Soc. 2010; 132: 15528
    • 2e Matsumoto T. Sohma T. Yamaguchi H. Kurata S. Suzuki K. Tetrahedron 1995; 27: 7347
    • 2f Kaelin DE. Sparks SM. Plake HR. Martin SF. J. Am. Chem. Soc. 2003; 125: 12994
    • 2g Toshima K. Matsuo G. Ushiki Y. Nakata M. Matsumura S. J. Org. Chem. 1998; 63: 2307
    • 2h Morton GE. Barrett AG. M. Org. Lett. 2006; 8: 2859
    • 2i Oyama K. Kondo T. J. Org. Chem. 2004; 69: 5240
    • 2j Palmacci E. Seeberger PH. Org. Lett. 2001; 3: 1547
    • 2k Tatsuta K. Ozeki H. Yamaguchi M. Tanaka M. Okui T. Tetrahedron Lett. 1990; 31: 5495
    • 2l Denmark SE. Regens CS. Kobayashi T. J. Am. Chem. Soc. 2007; 129: 2774
    • 2m Parker KA. Coburn C. Koh YH. J. Org. Chem. 1995; 60: 2938
    • 2n Parker KA. Mindt TL. Koh YH. Org. Lett. 2006; 8: 1759
    • 2o Milstein D. Stille JK. J. Am. Chem. Soc. 1978; 100: 3636
    • 2p Miyaura N. Suzuki A. J. Chem. Soc., Chem. Commun. 1979; 866
    • 2q Heck RF. Nolley JP. J. Org. Chem. 1972; 37: 2320
    • 2r King AO. Okukado N. Negishi E.-I. J. Chem. Soc., Chem. Commun. 1977; 683
    • 2s Danishefsky SJ. Uang BJ. Quallich G. J. Am. Chem. Soc. 1985; 107: 1285
    • 2t Bednarski M. Danishefsky SJ. J. Am. Chem. Soc. 1983; 105: 3716
  • 3 Santos RG. Jesus AR. Caio JM. Rauter AP. Curr. Org. Chem. 2011; 15: 128
  • 4 Yang Y. Yu B. Chem. Rev. 2017; 117: 12281
  • 5 Toshima K. Ushiki Y. Matsuo G. Matsumura S. Tetrahedron Lett. 1997; 38: 7375
    • 6a Ben A. Yamauchi T. Matsumoto T. Suzuki K. Synlett 2004; 225
    • 6b Yamauchi T. Watanabe Y. Suzuki K. Matsumoto T. Synthesis 2006; 2818
    • 7a Matsumoto T. Katsuki M. Suzuki K. Tetrahedron Lett. 1988; 29: 6935
    • 7b Sato S. Hiroe K. Kumazawa T. Carbohydr. Res. 2006; 341: 1091
    • 8a Herzner H. Palmacci ER. Seeberger PH. Org. Lett. 2002; 4: 2965
    • 8b Ramaiah PA. Row LR. Reddy DS. Anjaneyulu AS. R. Ward RS. Pelter A. J. Chem. Soc., Perkin Trans. 1 1979; 2313
    • 9a Adinolfi M. Barone G. Iadonisi A. Schiattarella M. Synlett 2002; 269
    • 9b Li Y. Wei G. Yu B. Carbohydr. Res. 2006; 341: 2717
    • 9c Weck S. Opatz T. Synthesis 2010; 2393
    • 9d Mahling J.-A. Schmidt RR. Synthesis 1993; 325
  • 10 Mitra P. Behera B. Maiti TK. Mal D. J. Org. Chem. 2013; 78: 9748
  • 11 Mitra P. Mandal S. Chakraborty S. Mal D. Tetrahedron 2015; 71: 5610
  • 12 Schneemann I. Kajahn I. Ohlendorf B. Zinecker H. Erhard A. Nagel K. Wiese J. Imhoff JF. J. Nat. Prod. 2010; 73: 1309
  • 13 Mahajan SS. Scian M. Sripathy S. Posakony J. Lao U. Loe TK. Leko V. Thalhofer A. Schuler AD. Bedalov A. Simon JA. J. Med. Chem. 2014; 57: 3283
  • 14 Narute S. Parnes R. Toste FD. Pappo D. J. Am. Chem. Soc. 2016; 138: 16553
  • 15 Chen YH. Cheng DJ. Zhang J. Wang Y. Liu XY. Tan B. J. Am. Chem. Soc. 2015; 137: 15062
  • 16 Xu C. Zheng H. Hu B. Liu X. Lin L. Feng X. Chem. Commun. 2017; 9741
  • 17 Kuo HM. Hsuan C. Sheu HS. Lai CK. Tetrahedron 2013; 69: 4226
  • 18 An P. Yu Z. Lin Q. Org. Lett. 2013; 15: 5496
  • 19 Prince P. Gandour RD. Synlett 1991; 405
  • 20 Zhang Y. Shi B. Yu JQ. Angew. Chem. Int. Ed. 2009; 48: 6097
  • 21 Brimble MA. Davey RM. McLeod MD. Murphy M. Aust. J. Chem. 2003; 56: 787
  • 22 Parker KA. Ding Q. Tetrahedron 2000; 56: 10255
  • 23 Bucher C. Gilmour R. Angew. Chem. Int. Ed. 2010; 49: 8724