Synlett 2018; 29(05): 576-580
DOI: 10.1055/s-0036-1591736
letter
© Georg Thieme Verlag Stuttgart · New York

Organocatalytic Asymmetric Synthesis of Pentasubstituted Tetrahydrothiopyrans Bearing a Quaternary Centre through a Double Michael Reaction

Buddhadeb Mondal
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India   Email: span@iitg.ernet.in
,
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India   Email: span@iitg.ernet.in
› Author Affiliations
Further Information

Publication History

Received: 25 September 2017

Accepted after revision: 07 November 2017

Publication Date:
07 December 2017 (eFirst)

Abstract

An organocatalytic, asymmetric, double-Michael strategy has been developed employing trans-α-cyano-α,β-unsaturated ketones for the synthesis of pentasubstituted tetrahydrothiopyrans bearing a quaternary center. A proline-derived bifunctional thiourea was found to be the most effective catalyst for this reaction. With 10 mol% of catalyst, good yields and good to high diastereomeric ratios, as well as excellent enantioselectivities, were obtained with a variety of tetrahydrothiopyrans under mild reaction conditions.

Supporting Information

 
  • References and Notes


    • For reviews, see:
    • 1a Woodward RB. Heusler K. Gosteli J. Naegeli P. Oppolzer W. Ramage R. Ranganathan S. Vorbrüggen J. J. Am. Chem. Soc. 1966; 88: 852
    • 1b Casy G. Lane S. Taylor RJ. K. J. Chem. Soc., Perkin Trans. 1 1986; 1397
    • 1c Ohuchida S. Hamanaka N. Hayashi M. Tetrahedron 1983; 39: 4273
  • 2 Cook DC. Hart TW. Mclay IM. Palfreyman MN. Walsh RJ. A. Aloup JC. EP 0326297, 1989
  • 3 Kakinuma H. Oi T. Hashimoto-Tsuchiya Y. Arai M. Kawakita Y. Fukasawa Y. Iida I. Hagima N. Takeuchi H. Chino Y. Asami J. Okumura-Kitajima L. Io F. Yamamoto D. Miyata N. Takahashi T. Uchida S. Yamamoto K. J. Med. Chem. 2010; 53: 3247
  • 4 Parthiban P. Aridoss G. Rathika P. Ramkumar V. Kabilan S. Bioorg. Med. Chem. Lett. 2009; 19: 2981
  • 5 Abad A. López-Pérez JL. del Olmo E. García-Fernández LF. Francesch A. Trigili C. Barasoain I. Andreu JM. Díaz JF. San Feliciano A. J. Med. Chem. 2012; 55: 6724
    • 6a Woodward RB. Logusch E. Nambiar KP. Sakan K. Ward DE. Au-Yeung BW. Balaram P. Browne LJ. Card PJ. Chen CH. J. Am. Chem. Soc. 1981; 103: 3210
    • 6b Almena J. Foubelo F. Yus M. Tetrahedron 1997; 53: 5563
    • 6c Agarwal VK. Smith HW. Hynd G. Jones RV. H. Fieldhouse R. Spey SE. J. Chem. Soc., Perkin Trans. 1 2000; 3267
    • 7a Whitehead EV. Dean RA. Fidler FA. J. Am. Chem. Soc. 1951; 73: 3632
    • 7b Fehnel EA. Oppenlander GC. J. Am. Chem. Soc. 1953; 75: 4660
    • 7c Nagasawa K. Yoneta A. Chem. Pharm. Bull. 1985; 33: 5048
    • 7d Cui Y. Floreancig PE. Org. Lett. 2012; 14: 1720
    • 7e Bondalapati S. Gogoi P. Indukuri K. Saikia AK. J. Org. Chem. 2012; 77: 2508
    • 8a Aggarwal VK. Angelaud R. Bihan D. Blackburn P. Fieldhouse R. Fonquerna SJ. Ford GD. Hynd G. Jones E. Jones RV. H. Jubault P. Palmer MJ. Ratcliffe PD. Adams H. J. Chem. Soc., Perkin Trans. 1 2001; 2604
    • 8b Gunasundari T. Chandrasekaran S. J. Org. Chem. 2010; 75: 6685
    • 8c Zhang J. Niu Y. Cao X. Ye X.-S. Tetrahedron 2012; 68: 4242
    • 8d Periasamy M. Gurubrahamam R. Muthukumaragopal GP. Tetrahedron: Asymmetry 2013; 24: 568
    • 9a Wang S. Zhang Y. Dong G. Wu S. Fang K. Li Z. Miao Z. Yao J. Li H. Li J. Zhang W. Wang W. Sheng C. Org. Lett. 2014; 16: 692
    • 9b Wang S. Jiang Y. Wu S. Dong G. Miao Z. Zhang W. Sheng C. Org. Lett. 2016; 18: 1028

    • For reviews, see:
    • 9c Chauhan P. Mahajan S. Enders D. Chem. Rev. 2014; 114: 8807
    • 9d Mondal B. Nandi S. Pan SC. Eur. J. Org. Chem. 2017; 4666

      For selected reviews, see:
    • 10a Volla CM. R. Atodiresi M. Rueping M. Chem. Rev. 2014; 114: 2390
    • 10b Pellissier H. Adv. Synth. Catal. 2012; 354: 237
    • 10c Moyano A. Rios R. Chem. Rev. 2011; 111: 4703
    • 10d Grondal C. Jeanty M. Enders D. Nat. Chem. 2010; 2: 167

      For selected examples, see:
    • 11a Zu LS. Wang J. Li H. Xie HX. Jiang W. Wang W. J. Am. Chem. Soc. 2007; 129: 1036
    • 11b Zu L. Xie H. Li H. Wang J. Jiang W. Wang W. Adv. Synth. Catal. 2007; 349: 1882
    • 11c Dodda R. Goldman JJ. Mandal T. Zhao C.-G. Broker GA. Tiekink ER. T. Adv. Synth. Catal. 2008; 350: 537
    • 11d Wang J. Xie HX. Li H. Zu LS. Wang W. Angew. Chem. Int. Ed. 2008; 47: 4177

      For selected examples, see:
    • 12a Brandau S. Maerten E. Jørgensen KA. J. Am. Chem. Soc. 2006; 128: 14986
    • 12b Li H. Zu L. Xie H. Wang J. Jiang W. Wang W. Org. Lett. 2007; 9: 1833
    • 12c Tang J. Xu DQ. Xia AB. Wang YF. Jiang JR. Luo SP. Xu YZ. Adv. Synth. Catal. 2010; 352: 2121
    • 12d Yu C. Zhang Y. Song A. Ji Y. Wang W. Chem. Eur. J. 2011; 17: 770
    • 12e Ling J.-B. Su Y. Zhu H.-L. Wang G.-Y. Xu P.-F. Org. Lett. 2012; 14: 1090
    • 12f Meninno S. Croce G. Lattanzi A. Org. Lett. 2013; 15: 3436
    • 12g For reviews, see refs. 9 (c) and 9(d)

      For recent reviews on syntheses of quaternary centers through organocatalytic cascade reactions, see:
    • 13a Vetica F. de Figueiredo RM. Orsini M. Tofani D. Gasperi T. Synthesis 2015; 47: 2139
    • 13b Tian L. Luo Y.-C. Hu X.-Q. Xu P.-F. Asian J. Org. Chem. 2016; 5: 580

      For Michal reactions using trans -α-cyano-α,β-unsaturated ketones as acceptors for constructing six-membered rings, see:
    • 14a Fujii M. Terao Y. Sekiya M. Chem. Pharm. Bull. 1974; 22: 2675
    • 14b Das U. Huang C.-H. Lin W. Chem. Commun. 2012; 48: 5590
    • 14c Chen X.-Y. Sun L.-H. Ye S. Chem. Eur. J. 2013; 19: 4441
    • 14d Shi M.-L. Zhan G. Zhou S.-L. Du W. Chen Y.-C. Org. Lett. 2016; 18: 6480
    • 15a Vinayagam P. Vishwanath M. Kesavan V. Tetrahedron: Asymmetry 2014; 25: 568
    • 15b Gajulapalli VP. R. Vinayagam P. Kesavan V. RSC Adv. 2015; 5: 7370
    • 15c Vishwanath M. Prakash M. Vinayagam P. Kesavan V. Synthesis 2016; 48: 2671
    • 15d Gajulapalli VP. R. Lokesh K. Vishwanath M. Kesavan V. RSC Adv. 2016; 6: 12180
    • 15e Jin H. Kim ST. Hwang G.-S. Ryu DH. J. Org. Chem. 2016; 81: 3263
  • 16 CCDC 1562510 contains the crystallographic data for 3aa. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 17 Pentasubstituted Tetrahydrothiopyrans 3aaja; General Method An oven-dried round-bottomed flask was charged with 1 (0.1 mmol), 2 (0.12 mmol), catalyst VI (10 mol%). MTBE (0.4 mL) was added, and the mixture was stirred at r.t. for 5 d until the reaction was complete (TLC). The solvent was removed and the mixture was directly purified by column chromatography [silica gel, hexane–EtOAc (10–15%)]. 2,4-Dibenzoyl-5-(2-oxo-2-phenylethyl)-3-phenyltetrahydro-2H-thiopyran-4-carbonitrile (3aa) White solid; yield: 37.0 mg (70%), dr 6:1 (1H NMR), ee 90% (HPLC); mp 65–67 °C. HPLC: Chiralpak IA [hexane–i-PrOH (90:10), flow rate: 1.0 mL/min, λ = 254 nm]; t major = 13.6 min, t minor = 16.4 min. 1H NMR (600 MHz, CDCl3): δ = 8.02 (d, J = 7.4 Hz, 2 H), 7.90 (d, J = 7.5 Hz, 2 H), 7.57 (d, J = 7.6 Hz, 3 H), 7.54 (s, 1 H), 7.49 (dd, J = 15.9, 7.8 Hz, 5 H), 7.41 (t, J = 7.8 Hz, 2 H), 7.34 (t, J = 7.8 Hz, 2 H), 7.14–7.05 (m, 3 H), 5.54 (d, J = 11.4 Hz, 1 H), 4.44 (d, J = 11.3 Hz, 1 H), 4.13 (d, J = 14.4 Hz, 1 H), 3.93 (dd, J = 18.7, 7.4 Hz, 1 H), 3.85–3.80 (m, 1 H), 3.62 (dd, J = 18.6, 2.5 Hz, 1 H), 2.90 (dd, J = 14.6, 3.3 Hz, 1 H). 13C NMR (151 MHz, CDCl3): δ = 197.1, 194.9, 194.0, 137.0, 136.5, 136.4, 135.7, 134.0, 133.8, 133.2, 128.9, 128.8, 128.7, 128.4, 128.4, 128.1, 120.9, 58.4, 46.8, 44.4, 36.6, 36.4, 32.2. HRMS (ESI): m/z [M + NH4]+ calcd for C34H31N2O3S: 547.2055; found: 547.2055.