Synlett 2018; 29(05): 655-657
DOI: 10.1055/s-0036-1591723
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Production of Diaryl Sulfides Using Aryl Iodides and a Disilathiane

Yohei Ogiwara
Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan   Email: sakachem@rs.noda.tus.ac.jp
,
Hiromu Maeda
Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan   Email: sakachem@rs.noda.tus.ac.jp
,
Norio Sakai*
Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan   Email: sakachem@rs.noda.tus.ac.jp
› Author Affiliations
This work was partially supported by JSPS KAKENHI Grant Number JP16K21400.
Further Information

Publication History

Received: 20 September 2017

Accepted after revision: 19 October 2017

Publication Date:
23 November 2017 (eFirst)

Abstract

A disilathiane was found to be a novel S1 source for the copper-catalyzed synthesis of diaryl sulfides using aryl iodides. The reaction of iodoarenes and hexamethyldisilathiane, (Me3Si)2S, in the presence of a catalytic amount of CuI/1,10-phenanthroline provided various types of diaryl sulfides in good yields.

Supporting Information

 
  • References and Notes


    • Representative reviews:
    • 1a Kondo T. Mitsudo T. Chem. Rev. 2000; 100: 3205
    • 1b Ley SV. Thomas AW. Angew. Chem. Int. Ed. 2003; 42: 5400
    • 1c Liu H. Jiang X. Chem. Asian J. 2013; 8: 2546
    • 1d Shen C. Zhang P. Sun Q. Bai S. Hor TS. A. Liu X. Chem. Soc. Rev. 2015; 44: 291
    • 1e Ghaderi A. Tetrahedron 2016; 72: 4758
    • 2a Miyazaki T. Nishino K. Yoshimoto S. Ogiwara Y. Sakai N. Eur. J. Org. Chem. 2015; 1991
    • 2b Miyazaki T. Katayama M. Yoshimoto S. Ogiwara Y. Sakai N. Tetrahedron Lett. 2016; 57: 676
    • 3a Taniguchi N. Synlett 2005; 1687
    • 3b Jiang Y. Qin Y. Xie S. Zhang X. Dong J. Ma D. Org. Lett. 2009; 11: 5250
    • 3c Taniguchi N. Tetrahedron 2012; 68: 10510
    • 3d Arisawa M. Ichikawa T. Yamaguchi M. Org. Lett. 2012; 14: 5318
    • 3e Chen HY. Peng WT. Lee YH. Chang YL. Chen YJ. Lai YC. Jheng NY. Chen HY. Organometallics 2013; 32: 5514
    • 3f Yavari I. Ghazanfarpour-Darjani M. Solgi Y. Synlett 2014; 25: 1121
    • 3g Rostami A. Rostami A. Iranpoor N. Zolfigol MA. Tetrahedron Lett. 2016; 57: 192
    • 4a Firouzabadi H. Iranpoor N. Gholinejad M. Adv. Synth. Catal. 2010; 352: 119
    • 4b Kuhn M. Falk FC. Paradies J. Org. Lett. 2011; 13: 4100
    • 4c Mondal J. Modak A. Dutta A. Basu S. Jha SN. Bhattacharyya D. Bhaumik A. Chem. Commun. 2012; 48: 8000
    • 4d Roy S. Phukan P. Tetrahedron Lett. 2015; 56: 2426
    • 4e Choghamarani AG. Teherinia Z. RSC Adv. 2016; 6: 59410
    • 5a Prasad DJ. C. Sekar G. Org. Lett. 2011; 13: 1008
    • 5b Akkilagunta VK. Kakulapati RR. J. Org. Chem. 2011; 76: 6819
  • 6 Park N. Park K. Jang M. Lee S. J. Org. Chem. 2011; 76: 4371
    • 7a Ke F. Qu Y. Jiang Z. Li Z. Wu D. Zhou X. Org. Lett. 2011; 13: 454
    • 7b Reddy KH. V. Reddy VP. Kumar AA. Kranthi G. Nageswar YV. D. Beilstein J. Org. Chem. 2011; 7: 886
    • 7c Li X. Yuan T. Chen J. Chin. J. Chem. 2012; 30: 651
    • 7d Hajipour AR. Pourkaveh R. Karimi H. Appl. Organometal. Chem. 2014; 28: 879
  • 8 Li Y. Nie C. Wang H. Li X. Verpoort F. Duan C. Eur. J. Org. Chem. 2011; 7331
    • 9a Zhao P. Yin H. Gao H. Xi C. J. Org. Chem. 2013; 78: 5001
    • 9b Firouzabadi H. Iranpoor N. Samadi A. Tetrahedron Lett. 2014; 55: 1212
    • 10a Qiao Z. Wei J. Jiang X. Org. Lett. 2014; 16: 1212
    • 10b Reeves JT. Camara K. Han ZS. Xu Y. Lee H. Busacca CA. Senanayake CH. Org. Lett. 2014; 16: 1196
  • 11 Li Z. Sun L. Yang L. Zeng Q. Fresenius Environ. Bull. 2015; 24: 3686
  • 12 See the Supporting Information for more details on the screening of the ligands.
  • 13 For a review of transition-metal-catalyzed C–S bond formation via cross-coupling reactions, see: Beletskaya IP. Ananikov VP. Chem. Rev. 2011; 111: 1596
  • 14 General Procedure To a screw-capped test tube under a nitrogen atmosphere, 1,10-phenanthroline (0.05 mmol, 9.0 mg), iodobenzene 1 (1 mmol), K2CO3 (1 mmol, 138.2 mg), CuI (0.05 mmol, 9.5 mg), N-methyl-2-pyrrolidone (1 mL), and 1,1,1,3,3,3-hexamethyldisilathiane (0.5 mmol, 89.2 mg) were added. After the tube was sealed with a cap, the mixture was heated at 120 °C for 14 h. After the reaction, H2O was added to the mixture, which was then extracted with EtOAc three times. The combined organic phases were evaporated under reduced pressure. The crude material was purified by silica gel column chromatography to give the corresponding diaryl sulfide 2. Diphenyl Sulfide (2a) The general procedure was followed with iodobenzene (1a, 202.7 mg, 0.99 mmol) for 14 h. Column chromatography (hexane) afforded 2a as a colorless oil (85.0 mg, 92%). 1H NMR (500.2 MHz, CDCl3): δ = 7.23 (t, J = 7.5 Hz, 2 H, ArH), 7.29 (t, J = 7.5 Hz, 4 H, ArH), 7.34 (d, J = 7.5 Hz, 4 H, ArH). 13C NMR (125.8 MHz, CDCl3): δ = 127.0, 129.2, 131.0, 135.8. LRMS (EI): m/z (% relative intensity) = 187 (17) [M + 1]+, 186 (100), 185 (69), 184 (27), 154 (14), 134 (14), 77 (15), 51 (20).
  • 15 An alkyl iodide was also applicable for this reaction (Scheme 4).
  • 16 See the Supporting Information for further results to support the proposed mechanism.