Synlett 2018; 29(06): 736-741
DOI: 10.1055/s-0036-1591697
cluster
© Georg Thieme Verlag Stuttgart · New York

Chelation-Assisted C–H and C–C Bond Activation of Allylic Alcohols by a Rh(I) Catalyst under Microwave Irradiation

Chang-Hee Lee
Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea   Email: junch@yonsei.ac.kr
,
Chul-Ho Jun*
Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea   Email: junch@yonsei.ac.kr
› Author Affiliations
This study was financially supported by a grant from the National Research Foundation of Korea (NRF) (Grant 2016-R-1A2b4009460).
Further Information

Publication History

Received: 28 September 2017

Accepted after revision: 06 November 2017

Publication Date:
16 November 2017 (online)

Published as part of the Cluster C–C Activation

Abstract

Chelation-assisted Rh(I)-catalyzed ketone synthesis from allylic alcohols and alkenes through C–H and C–C bond activations under microwave irradiation was developed. Aldimine is formed via olefin isomerization of allyl alcohol under Rh(I) catalysis and condensation with 2-amino-3-picoline, followed by continuous C–H and C–C bond activations to produce a dialkyl ketone. The addition of piperidine accelerates the reaction rate by promoting aldimine formation under microwave conditions.

 
  • References and Notes

    • 1a Ryabov AD. Chem. Rev. 1990; 90: 403
    • 1b Shilov AE. Shul’pin GB. Chem. Rev. 1997; 97: 2879
    • 1c Dyker G. Angew. Chem. Int. Ed. 1999; 38: 1698
    • 1d Park YJ. Park J.-W. Jun C.-H. Acc. Chem. Res. 2008; 41: 222
    • 1e Souillart L. Cramer N. Chem. Rev. 2015; 115: 9410
    • 1f Xia Y. Lu G. Liu P. Dong G. Nature 2016; 539: 546
    • 1g Fumagalli G. Stanton S. Bower JF. Chem. Rev. 2017; 117: 9404
    • 1h Kim D.-S. Park W.-J. Jun C.-H. Chem. Rev. 2017; 117: 8977
    • 2a Bosnich B. Acc. Chem. Res. 1998; 31: 667
    • 2b Jun C.-H. Jo E.-A. Park J.-W. Eur. J. Org. Chem. 2007; 1869
    • 2c Willis MC. Chem. Rev. 2010; 110: 725
    • 2d Leung JC. Krische MJ. Chem. Sci. 2012; 3: 2202
    • 2e Ghosh A. Johnson KF. Vickerman KL. Walker Jr JA. Stanley LM. Org. Chem. Front. 2016; 3: 639
    • 3a Jun C.-H. Lee H. Hong J.-B. J. Org. Chem. 1997; 62: 1200
    • 3b Jun C.-H. Lee D.-Y. Hong J.-B. Tetrahedron Lett. 1997; 38: 6673
    • 3c Jun C.-H. Huh C.-W. Na S.-J. Angew. Chem. Int. Ed. 1998; 37: 145
    • 3d Jun C.-H. Hong J.-B. Lee D.-Y. Synlett 1999; 1
    • 3e Jun C.-H. Hong J.-B. Org. Lett. 1999; 1: 887
    • 3f Jun C.-H. Lee D.-Y. Lee H. Hong J.-B. Angew. Chem. Int. Ed. 2000; 39: 3070
    • 3g Jun C.-H. Chung J.-H. Lee D.-Y. Loupy A. Chatti S. Tetrahedron Lett. 2001; 42: 4803
    • 3h Jun C.-H. Chung K.-Y. Hong J.-B. Org. Lett. 2001; 3: 785
    • 3i Jo E.-A. Lee J.-H. Jun C.-H. Chem. Commun. 2008; 5779
  • 4 Lee D.-Y. Moon CW. Jun C.-H. J. Org. Chem. 2002; 67: 3945
    • 5a Jun C.-H. Lee H. J. Am. Chem. Soc. 1999; 121: 880
    • 5b Jun C.-H. Lee H. Park J.-B. Lee D.-Y. Org. Lett. 1999; 1: 2161
    • 5c Jun C.-H. Lee D.-Y. Kim Y.-H. Lee H. Organometallics 2001; 20: 2928
    • 5d Lee D.-Y. Kim I.-J. Jun C.-H. Angew. Chem. Int. Ed. 2002; 41: 3031
    • 6a Perreux L. Loupy A. Tetrahedron 2001; 57: 9199
    • 6b Loupy A. Chatti S. Delamare S. Lee D.-Y. Chung J.-H. Jun C.-H. J. Chem. Soc., Perkin Trans. 1 2002; 1280
    • 6c Kappe CO. Angew. Chem. Int. Ed. 2004; 43: 6250
    • 6d Vo-Thanh G. Lahrache H. Loupy A. Kim I.-J. Chang D.-H. Jun C.-H. Tetrahedron 2004; 60: 5539
    • 6e Ahn J.-A. Chang D.-H. Park YJ. Yon YR. Loupy A. Jun C.-H. Adv. Synth. Catal. 2006; 348: 55
  • 7 Morales S. Guijarro FG. Ruano JL. G. Cid MB. J. Am. Chem. Soc. 2014; 136: 1082
    • 8a Suggs JW. J. Am. Chem. Soc. 1979; 101: 489
    • 8b Park YJ. Jo E.-A. Jun C.-H. Chem. Commun. 2005; 1185
  • 9 Layer RW. Chem. Rev. 1963; 63: 489
  • 10 Typical Procedure for the Rh(I)-Catalyzed Hydroacylation with Allyl Alcohol through C–H and C–C Bond ActivationTo a 10 mL thick-walled Pyrex tube were added allyl alcohol (1a, 13.6 μL, 0.2 mmol), norbornene (2a, 113.0 mg, 1.2 mmol), [Rh(C2H4)2Cl]2(3, 3.9 mg, 0.01 mmol), 2-amino-3-picoline (6, 20.2 μL, 0.2 mmol), and tricyclohexylphosphine (4, 16.8 mg, 0.06 mmol), and piperidine (5, 4.0 μL, 0.04 mmol). The reaction vessel was capped with a Teflon septum and installed in a CEM Discover microwave reactor. The reaction was carried out with internal magnetic stirring at 200 °C under microwave irradiation. After cooling, the reaction mixture was filtered through a short column filled with silica and washed with CH2Cl2 and ethyl acetate. The filtrate was analyzed by GC-MS and determined to be 93% of dinorbornyl ketone (7a) and 7% of norbornyl 3-propanone (8a).
  • 11 Synthesis of N,N′-Bis(3-methylpyridin-2-yl)propane-1,1-diamine (10)Propionaldehyde (9a, 500 mg, 8.60 mmol) was added to 2-amino-3-picoline (6, 1.73 mL, 17.2 mmol) and 4 Å MS at room temperature. When the mixture was stirred at room temperature for 12 h, a pale yellow solid formed. It was dissolved in methylene chloride and filtered. The resulting solution was concentrated and then re-crystallized from a methylene chloride/hexane mixture, then filtered and dried in vacuo to give the aminal 10 as white solid (1.79 g, 81%). 1H NMR (400 MHZ, CDCl3): δ = 7.97 (d, J = 4.0 Hz, 2 H), 7.16 (d, J = 6.8 Hz, 2 H), 6.49 (dd, J = 5.2, 7.2 Hz, 2 H), 5.73 (d, J = 5.73 Hz, 2 H, NH), 5.57–5.53 (m, 1 H), 2.28–2.25 (m, 2 H), 2.02 (s, 6 H), 1.01 (t, J = 7.2 Hz, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 156.8, 145.1, 137.2, 117.9, 113.1, 63.8, 27.6, 17.4, 11.4 ppm. IR (CH2Cl2): 3415, 3379, 2966, 2947, 2875, 1598, 1581, 1506, 1487, 1463, 1413, 1334, 1325, 1282, 1188, 1149, 1114, 1031, 779 cm–1. Aminal 10 is determined as aldimine 9b in HRMS. ESI-HRMS: m/z calcd for C9H12N2148.1000; found: 149.1050 [M + H+].