Synlett 2017; 28(19): 2561-2564
DOI: 10.1055/s-0036-1591676
cluster
© Georg Thieme Verlag Stuttgart · New York

C–S Bond Alkynylation of Diaryl Sulfoxides with Terminal Alkynes by Means of a Palladium–NHC Catalyst

Yuto Yoshida
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan   Email: yori@kuchem.kyoto-u.ac.jp
,
Keisuke Nogi
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan   Email: yori@kuchem.kyoto-u.ac.jp
,
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan   Email: yori@kuchem.kyoto-u.ac.jp
› Author Affiliations
This work was supported by JSPS KAKENHI Grant Numbers JP16H01019, JP16H04109, JP16H06887, as well as JST ACT-C Grant Number JPMJCR12ZE, Japan. H.Y. thanks Japan Association for Chemical Innovation, Tokuyama Science Foundation, and The Naito Foundation for financial support.
Further Information

Publication History

Received: 02 October 2017

Accepted: 27 October 2017

Publication Date:
08 November 2017 (online)


Published as part of the Cluster C–O Activation

Abstract

Sonogashira–Hagihara-type alkynylation of diaryl sulfoxides with unactivated terminal alkynes has been developed. With a combination of a palladium–NHC catalyst and LiOtBu as a base, a series of diaryl sulfoxides were converted into the alkynylated products via C–S bond cleavage.

Supporting Information

 
  • References and Notes

    • 1a Brandsma L. Synthesis of Acetylenes, Allenes and Cumulenes: Methods and Techniques. Elsevier; Oxford: 2004: 293
    • 1b Nájera C. Chinchilla R. Transition Metal-Catalyzed Alkynylation Reactions . CRC Press; Boca Raton, FL: 2013
    • 1c Negishi E.-i. Anastasia L. Chem. Rev. 2003; 103: 1979

      Reviews of Sonogashira–Hagihara-type alkynylation:
    • 2a Sonogashira K. J. Organomet. Chem. 2002; 653: 46
    • 2b Tykwinski R. Angew. Chem. Int. Ed. 2003; 42: 1566
    • 2c Chinchilla R. Nájera C. Chem. Rev. 2007; 107: 874
    • 2d Doucet H. Hierso J.-C. Angew. Chem. Int. Ed. 2007; 46: 834
    • 2e Chinchilla R. Nájera C. Chem. Soc. Rev. 2011; 40: 5084
    • 2f Jenny NM. Mayor M. Eaton TR. Eur. J. Org. Chem. 2011; 4965
    • 2g Karak M. Barbosa LC. A. Hargaden GC. RSC Adv. 2014; 4: 53442
    • 2h Wang D. Gao S. Org. Chem. Front. 2014; 1: 556
    • 3a Gelman D. Buchwald SL. Angew. Chem. Int. Ed. 2003; 42: 5993
    • 3b R’kyek O. Halland N. Lindenschmidt A. Alonso J. Lindemann P. Urmann M. Nazaré M. Chem. Eur. J. 2010; 16: 9986
  • 4 Choy PY. Chow WK. So CM. Lau CP. Kwong FY. Chem. Eur. J. 2010; 16: 9982
  • 5 Cargill MR. Sandford G. Kilickiran P. Nelles G. Tetrahedron 2013; 69: 512
  • 6 Okita T. Kumazawa K. Takise R. Muto K. Itami K. Yamaguchi J. Chem. Lett. 2017; 46: 218
    • 7a Mehta VP. Sharma A. Van der Eycken E. Org. Lett. 2008; 10: 1147
    • 7b Shook BC. Chakravarty D. Jackson PF. Tetrahedron Lett. 2009; 50: 1013
    • 7c Paun A. Matache M. Enache F. Nicolau I. Paraschivescu CC. Ionita P. Zarafu I. Parvulescu VI. Guillaumet G. Tetrahedron Lett. 2015; 56: 5349
    • 8a Silva S. Sylla B. Suzenet F. Tatibouët A. Rauter AP. Rollin P. Org. Lett. 2008; 10: 853
    • 8b Guinchard X. Roulland E. Org. Lett. 2009; 11: 4700
    • 8c Maltsev OV. Pöthig A. Hintermann L. Org. Lett. 2014; 16: 1282
    • 8d Wu Y. Xing Y. Wang J. Sun Q. Kong W. Suzenet F. RSC Adv. 2015; 5: 48558
    • 8e Yang Z. Li J. Yang T. Zhou C. RSC Adv. 2016; 6: 65775
  • 9 Baralle A. Yorimitsu H. Osuka A. Chem. Eur. J. 2016; 22: 10768
  • 10 Saito H. Nogi K. Yorimitsu H. Synthesis 2017; 49: 4769
  • 11 Yamamoto K. Otsuka S. Nogi K. Yorimitsu H. ACS Catal. 2017; 7: 7623
  • 12 Düfert MA. Billingsley KL. Buchwald SL. J. Am. Chem. Soc. 2013; 135: 12877

    • Reviews of Pd–PEPPSI–NHC catalysts:
    • 13a Kantchev EA. B. O’Brien CJ. Organ MG. Aldrichimica Acta 2006; 39: 117
    • 13b Organ MG. Chass GA. Fang D.-C. Hopkinson AC. Valente C. Synthesis 2008; 2776
    • 13c Valente C. Çalimsiz S. Hoi KH. Mallik D. Sayah M. Organ MG. Angew. Chem. Int. Ed. 2012; 51: 3314
  • 14 Brandsma L. Preparative Acetylenic Chemistry . 2nd ed. Elsevier; Oxford: 1988: 231
  • 15 Alkynylation of 1a with 2a – Representative ProcedureAn oven-dried Schlenk tube was charged with diphenyl sulfoxide (1a, 61 mg, 0.30 mmol), 1-dodecyne (2a, 60 mg, 0.36 mmol), Pd–PEPPSI–SIPr (5.1 mg, 0.0075 mmol), LiOtBu (36 mg, 0.45 mmol), and THF (1.5 mL). The resulting mixture was stirred at 70 °C for 6 h. The reaction was quenched with sat. aq NH4Cl (0.10 mL), and the resulting mixture was passed through pads of anhydrous Na2SO4, activated alumina, and silica gel with Et2O as an eluent. The ethereal solution was concentrated under reduced pressure. The residue was purified by silica gel column chromatography with an eluent (hexane/toluene = 25:1) to provide 3aa as a colorless oil (68 mg, 0.28 mmol, 93% yield). All the resonances in 1H NMR and 13C NMR spectra were consistent with reported values. See: Yasukawa T. Miyamura H. Kobayashi S. Org. Biomol. Chem. 2011; 9: 6208

    • Alkanesulfenate anions are less stable than arenesulfenate anions:
    • 16a Soderman SC. Schwan AL. Org. Lett. 2011; 13: 4192
    • 16b Jia T. Zhang M. Jiang H. Wang CY. Walsh PJ. J. Am. Chem. Soc. 2015; 137: 13887