Synthesis 2018; 50(20): 4081-4088
DOI: 10.1055/s-0036-1591598
paper
© Georg Thieme Verlag Stuttgart · New York

Expedient Synthesis of Long-Chain ω-Substituted Fatty Acids and Esters from Cyclic Ketones Using Iodine and Hydrogen Peroxide

Ekaterina V. Podrezova
a   The Tomsk Polytechnic University, Lenin avn., 30, 634050 Tomsk, Russian Federation   Email: yusubov@mail.ru
,
Maria S. Larkina
b   Siberian State Medical University, 634050 Tomsk, Russian Federation
,
Mikhail V. Belousov
b   Siberian State Medical University, 634050 Tomsk, Russian Federation
,
Andreas Kirschning
c   Institute of Organic Chemistry and Center of Biomolecular Drug Research (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 301267 Hannover, Germany
,
Viktor V. Zhdankin*
a   The Tomsk Polytechnic University, Lenin avn., 30, 634050 Tomsk, Russian Federation   Email: yusubov@mail.ru
d   Department of Chemistry and Biochemistry, University of Minnesota Duluth, MN 55812, USA
,
Mekhman S. Yusubov*
a   The Tomsk Polytechnic University, Lenin avn., 30, 634050 Tomsk, Russian Federation   Email: yusubov@mail.ru
› Author Affiliations
This work was supported by the grant of the Tomsk Polytechnic University Competitiveness Enhancement Program (VIU-195/2018).
Further Information

Publication History

Received: 18 May 2018

Accepted after revision: 02 June 2018

Publication Date:
19 July 2018 (online)


Abstract

A simple and convenient synthesis of ω-iodoaliphatic carboxylic acids and esters by the reaction of cyclic ketones with iodine and hydrogen peroxide in the presence of catalytic CuCl has been developed. ω-Iodoaliphatic carboxylic esters were further used for the efficient preparation of di(2-pyridylmethylamino)alkanoic acids in excellent yields.

Supporting Information

 
  • References


    • For representative examples, see:
    • 1a Shao F. Elias B. Lu W. Barton JK. Inorg. Chem. 2007; 46: 10187
    • 1b Wheatley NC. Andrews KT. Tran TL. Lucke AJ. Reid RC. Fairlie DP. Bioorg. Med. Chem. Lett. 2010; 20: 7080
    • 1c Funk RL. Abelman MM. Munger JD. Jr. Tetrahedron 1986; 42: 2831
    • 1d Caddick S. Wilden JD. Bush HD. Wadman SN. Judd DB. Org. Lett. 2002; 4: 2549
    • 2a Ouadi A. Habold C. Keller M. Bekaert V. Brasse D. RSC Adv. 2013; 3: 19040
    • 2b Elmaleh DR. Livni E. US Patent 4290965, 1969
    • 3a Heslinga L. Van der Linde R. Pabon HJ. J. Van Dorp DA. Recl. Trav. Chim. Pays-Bas 1975; 94: 262
    • 3b Kling MR. Easton CJ. Poulos A. J. Chem. Soc., Perkin Trans. 1 1993; 1183
    • 3c Hardouin C. Kelso MJ. Romero FA. Rayl TJ. Leung D. Hwang I. Cravatt BF. Boger DL. J. Med. Chem. 2007; 50: 3359
    • 4a Kraft P. Cadalbert R. Synlett 1997; 600
    • 4b Liu Z. Granata A. Shen X. Perlin AS. Can. J. Chem. 1992; 70: 2081
    • 4c Solladie G. Rubio A. Carreno MC. Garcia Ruano JL. Tetrahedron: Asymmetry 1990; 1: 187
    • 4d El Fangour S. Guy A. Despres V. Vidal J.-P. Rossi J.-C. Durand T. J. Org. Chem. 2004; 69: 2498
    • 5a Chaturvedi D. Chaturvedi AK. Mishra N. Mishra V. Org. Biomol. Chem. 2012; 10: 9148
    • 5b Zhao G. Yang C. Li B. Xia W. Beilstein J. Org. Chem. 2011; 7: 1342
    • 6a Strukul G. Angew. Chem. Int. Ed. 1998; 37: 1199
    • 6b Lei Z. Ma G. Wei L. Yang Q. Su B. Catal. Lett. 2008; 124: 330
  • 7 Gaikwad DD. Dake SA. Kulkarni RS. Jadhav WN. Kakde SB. Pawar RP. Synth. Commun. 2007; 37: 4093
    • 8a Punniyamurthy T. Rout L. Coord. Chem. Rev. 2008; 252: 134
    • 8b Lan Y. Yang C. Xu Y.-H. Loh T.-P. Org. Chem. Front. 2017; 4: 1411
  • 9 Kipke A. Schoening K.-U. Yusubov M. Kirschning A. Eur. J. Org. Chem. 2017; 6906
    • 10a Mahato TK. Babu S. Basak A. Biotechnol. Lett. 1993; 15: 1147
    • 10b Durman J. Elliott J. McElroy AB. Warren S. J. Chem. Soc., Perkin Trans. 1 1985; 1237
    • 11a Sundararajan C. Besanger TR. Labiris R. Guenther KJ. Strack T. Garafalo R. Kawabata TT. Finco-Kent D. Zubieta J. Babich JW. Valliant JF. J. Med. Chem. 2010; 53: 2612
    • 11b Pathuri G. Sahoo K. Awasthi V. Gali H. Bioorg. Med. Chem. Lett. 2010; 20: 5969
    • 11c Hicks JW. Harrington LE. Valliant JF. Chem. Commun. 2011; 7518
    • 11d Bartholomae MD. Vortherms AR. Hillier S. Ploier B. Joyal J. Babich J. Doyle RP. Zubieta J. ChemMedChem 2010; 5: 1513
    • 12a Rodpun K. Blackman AG. Gardiner MG. Tan EW. Meledandri CJ. Lucas NT. CrystEngComm 2015; 2974
    • 12b Rodpun K. Lucas NT. Tan EW. Meledandri CJ. Cryst. Growth Des. 2016; 16: 3940
    • 13a Kirin SI. Duebon P. Weyhermueller T. Bill E. Metzler-Nolte N. Inorg. Chem. 2005; 44: 5405
    • 13b Choi K.-Y. Park S.-Y. Jeon Y.-M. Ryu H. Struct. Chem. 2005; 16: 649
    • 13c Zeng H. Zhao L. Hu S. Liu Y. Yu H. Chen N. Zhang H. Dalton Trans. 2013; 2894
  • 14 Femia FJ. Maresca KP. Hillier SM. Zimmerman CN. Joyal JL. Barrett JA. Aras O. Dilsizian V. Eckelman WC. Babich JW. J. Nucl. Med. 2008; 49: 970
  • 15 Kim KM. Oh DJ. Ahn KH. Chem. Asian J. 2011; 6: 122
  • 16 Beaulieu N. Deslongchamps P. Can. J. Chem. 1980; 58: 164
  • 17 Olah GA. Karpeles R. Narang SC. Synthesis 1982; 963
  • 18 Yusubov MS. Zhdankin VV. Lar'kina MS. Drygunova LA. RU 2494087 C1 20130927, 2013
  • 19 Abrams SR. Can. J. Chem. 1986; 64: 457
  • 20 McNamara LM. A. Andrews MJ. I. Mitzel F. Siligardi G. Tabor AB. J. Org. Chem. 2001; 66: 4585
  • 21 Wang Y. Xia J. Yu J. Yin D. CN 1736988, 2006