Synthesis 2018; 50(10): 2106-2118
DOI: 10.1055/s-0036-1591546
paper
© Georg Thieme Verlag Stuttgart · New York

Reduction of Tertiary Phosphine Oxides by BH3 Assisted by Neighboring­ Activating Groups

Sylwia Sowa
Department of Organic Chemistry, Faculty of Chemistry, Maria Curie Skłodowska University, Gliniana St. 33, Lublin 20-614, Poland   Email: kazimierz.pietrusiewicz@poczta.umcs.lublin.pl
,
Marek Stankevič
Department of Organic Chemistry, Faculty of Chemistry, Maria Curie Skłodowska University, Gliniana St. 33, Lublin 20-614, Poland   Email: kazimierz.pietrusiewicz@poczta.umcs.lublin.pl
,
Anna Flis
Department of Organic Chemistry, Faculty of Chemistry, Maria Curie Skłodowska University, Gliniana St. 33, Lublin 20-614, Poland   Email: kazimierz.pietrusiewicz@poczta.umcs.lublin.pl
,
K. Michał Pietrusiewicz*
Department of Organic Chemistry, Faculty of Chemistry, Maria Curie Skłodowska University, Gliniana St. 33, Lublin 20-614, Poland   Email: kazimierz.pietrusiewicz@poczta.umcs.lublin.pl
› Author Affiliations
This work was financially supported by the Polish Ministry of Science and Higher Education through the grant (N N204 111 035).

Further Information

Publication History

Received: 12 December 2017

Accepted after revision: 25 January 2018

Publication Date:
21 February 2018 (online)


Abstract

Tertiary sulfanylphosphine and aminoalkylphosphine oxides can be easily converted into the corresponding tertiary sulfanylphosphine- and aminoalkylphosphine-boranes, respectively, through the facile P=O bond reduction by borane complexes. The easy reduction of the strong P=O bond by BH3, a mild reducing agent, has been achieved through an intramolecular P=O -- B complexation directed by proximal SH or NH activating groups located at the α- or β-position to the P=O bond. A generalized reduction mechanism has been proposed.

 
  • References

  • 1 Quin LD. A Guide to Organophosphorus Chemistry . Wiley-Interscience; New York: 2000
    • 2a Hiney RM. Higham LJ. Müller-Bunz H. Gilheany DG. Angew. Chem. Int. Ed. 2006; 45: 7248
    • 2b Byrne PA. Rajendran KV. Muldoon J. Gilheany DG. Org. Biomol. Chem. 2012; 10: 3531
    • 2c Busacca CA. Lorenz JC. Grinberg N. Haddad N. Hrapchak M. Latli B. Lee H. Sabila P. Saha A. Sarvestani M. Shen Sh. Varsolona R. Wei X. Senanayake CH. Org. Lett. 2005; 7: 4277
    • 2d Busacca CA. Raju R. Grinberg N. Haddad N. James-Jones P. Lee H. Lorenz JC. Saha A. Senanayake CH. J. Org. Chem. 2008; 73: 1524
    • 2e Ghosh AK. Nicponski DR. Kass J. Tetrahedron Lett. 2012; 53: 3699
    • 3a Ros A. Estepa B. Bermejo A. Álvarez E. Fernández R. Lassaletta JM. J. Org. Chem. 2012; 77: 4740
    • 3b Chen Z. Huang Z. Li Y. Lim LH. Zhou J. Su H. Zhou F. Angew. Chem. Int. Ed. 2013; 52: 4906
    • 4a Ebner C. Müller CA. Markert C. Pfaltz A. J. Am. Chem. Soc. 2011; 133: 4710
    • 4b Nigra MM. Yeh AJ. Okrut A. DiPasquale AG. Yeh SW. Solovyov A. Katz A. Dalton Trans. 2013; 42: 12762
    • 5a Naumann K. Zon G. Mislow K. J. Am. Chem. Soc. 1969; 91: 7012
    • 5b Valentine DJr. Blount JF. Toth K. J. Org. Chem. 1980; 45: 3691
    • 6a Coumbe T. Lawrence NJ. Muhammad F. Tetrahedron Lett. 1994; 35: 625
    • 6b Wu H.-C. Yu J.-Q. Spencer JB. Org. Lett. 2004; 6: 4675
    • 6c Berthod M. Favre-Réguillon A. Mohamad J. Mignani G. Docherty G. Lemaire M. Synlett 2007; 1545
    • 6d Li Y. Das S. Zhou S. Junge K. Beller M. J. Am. Chem. Soc. 2012; 134: 9727
    • 6e Li Y. Lu L.-Q. Das S. Pisiewicz S. Junge K. Beller M. J. Am. Chem. Soc. 2012; 134: 18325
  • 7 Imamoto T. Kikuchi S.-I. Miura T. Wada Y. Org. Lett. 2001; 3: 87
    • 8a Gladiali S. Dore A. Fabbri D. Medici S. Pirri G. Pulacchini S. Eur. J. Org. Chem. 2000; 2861
    • 8b Higham LJ. Clarke EF. Müller-Bunz H. Gilheany DG. J. Organomet. Chem. 2005; 690: 211

      For a related direct conversion of phosphine oxides to phosphine-boranes by (COCl)2/NaBH4 or (Et3O)BF4/NaBH4, see:
    • 9a Rajendran KV. Gilheany DG. Chem. Commun. 2012; 48: 817
    • 9b Kenny NP. Rajendran KV. Jennings EV. Gilheany DG. Chem. Eur. J. 2013; 19: 14210

      For a direct conversion of phosphine oxides to phosphine-boranes by BH3complexes, see:
    • 10a Köster R. Morita Y. Angew. Chem., Int. Ed. Engl. 1965; 4: 593
    • 10b Köster R. Schüßler W. Synoradzki L. Chem. Ber. 1987; 120: 1105
    • 10c Keglevich G. Fekete M. Chuluunbaatar T. Dobó A. Harmat V. Tőke L. J. Chem. Soc., Perkin Trans. 1 2000; 4451
    • 10d Keglevich G. Chuluunbaatar T. Ludányi K. Tőke L. Tetrahedron 2000; 56: 1
    • 10e Kiełbasiński P. Albrycht M. Żurawinski R. Mikołajczyk M. J. Mol. Catal. B: Enzym. 2006; 39: 45
    • 10f Kwiatkowska M. Krasiński G. Cypryk M. Cierpiał T. Kiełbasiński P. Tetrahedron: Asymmetry 2011; 22: 1581
    • 11a Stankevič M. Pietrusiewicz KM. Synlett 2003; 1012
    • 11b Stankevič M. Andrijewski G. Pietrusiewicz KM. Synlett 2004; 311
  • 12 Sowa S. Stankevič M. Szmigielska A. Małuszyńska H. Kozioł AE. Pietrusiewicz KM. J. Org. Chem. 2015; 80: 1672
    • 13a Lemouzy S. Nguyen DH. Camy V. Jean M. Gatineau D. Giordano L. Naubron J.-V. Vanthuyne N. Hérault D. Buono G. Chem. Eur. J. 2015; 21: 15607
    • 13b Lemouzy S. Jean M. Hérault D. Buono G. Org. Lett. 2016; 18: 140
    • 13c Getineau D. Nguyen DH. Hérault D. Vanthuyne N. Leclaire J. Giordano L. Buono G. J. Org. Chem. 2015; 80: 4132
    • 14a Yan Y. Zhang X. J. Am. Chem. Soc. 2006; 128: 7189
    • 14b Su HY. Taylor MS. J. Org. Chem. 2017; 82: 3173
    • 15a Bálint E. Tripolszky A. Jablonkai E. Karaghiosoff K. Czugler M. Mucsi Z. Kollár L. Pongrácz P. Keglevich G. J. Organomet. Chem. 2016; 801: 111
    • 15b Keglevich G. Szekrényi A. Szöllősy Á. Drahos L. Synth. Commun. 2011; 41: 2265
    • 15c Balint E. Fazekas E. Pinter G. Szöllősy A. Holczbauer T. Czugler M. Drahos L. Kortve T. Keglevich G. Curr. Org. Chem. 2012; 16: 547
    • 15d Bálint E. Fazekas E. Pongrácz P. Kollár L. Drahos L. Holczbauer T. Czugler M. Keglevich G. J. Organomet. Chem. 2012; 717: 75
    • 15e Bálint E. Tajti Á. Kalocsai D. Mátravölgyi B. Karaghiosoff K. Czugler M. Keglevich G. Tetrahedron 2017; 73: 5659
  • 16 Maj AM. Pietrusiewicz KM. Suisse I. Agbossou F. Mortreux A. J. Organomet. Chem. 2001; 626: 157
  • 17 Sugama H. Saito H. Danjo H. Imamoto T. Synthesis 2001; 2348
    • 18a Nilsson BL. Kiessling LL. Raines RT. Org. Lett. 2001; 3: 9
    • 18b Mühlberg M. Jaradat DM. M. Kleineweischede R. Papp I. Dechtrirat D. Muth S. Broncel M. Hackenberger CP. R. Bioorg. Med. Chem. 2010; 18: 3679
    • 18c Sowa S. Mühlberg M. Pietrusiewicz KM. Hackenberger CP. R. Bioorg. Med. Chem. 2013; 21: 3465
  • 19 Compound 12 was used in the form of a 1:0.9 diastereoisomeric mixture.
  • 20 Compound 13 was isolated in the form of a 1:0.4 diastereoisomeric mixture while the crude reaction mixture indicated dr = 1:0.55.
  • 21 The product of retro-Kabachnik–Fields reaction of 8c and 8d in the presence of BH3 was diphenylphosphine oxide, which underwent reduction with BH3 leading to the formation of diphenylphosphine-borane (11), similar to the reaction of 12 with H3B·SMe2 where phosphinous acid-borane 15 and secondary phosphine-borane 16 were present as products of complexation and reduction, respectively. For more details, see references 11a,b.
  • 22 Holt J. Maj AM. Schudde EP. Pietrusiewicz KM. Sieroń L. Wieczorek W. Jerphagnon T. Arends IW. C. E. Hanefeld U. Minnaard AJ. Synthesis 2009; 2061
  • 23 Wife RL. van Oort AB. van Doorn JA. van Leeuwen PW. N. M. Synthesis 1983; 71
  • 24 Achard T. Giordano L. Tenaglia A. Buono G. Gimbert Y. Organometallics 2010; 29: 3936
  • 26 Komarnicka UK. Starosta R. Kyzioł A. Jezowska-Bojczuk M. Dalton Trans. 2015; 44: 12688
  • 27 Wang ZA. Kurra Y. Wang X. Zeng Y. Lee Y.-J. Sharma V. Lin H. Dai SY. Liu WR. Angew. Chem. Int. Ed. 2017; 56: 1643
  • 28 Couture A. Deniau E. Grandclaudon P. Woisel P. Tetrahedron Lett. 1996; 52: 4433
  • 29 Lach J. Guo C.-Y. Kindermann MK. Jones PG. Heinicke J. Eur. J. Org. Chem. 2010; 6: 1176
  • 30 Van Es JJ. G. S. Jaarsveld K. Van der Ger A. J. Org. Chem. 1990; 55: 4063
  • 31 Baccolini G. Boga C. Mazzacurati M. Sangirardi F. Org. Lett. 2006; 8: 1677
  • 32 Yang C.-T. Fu Y. Huang Y.-B. Yi J. Liu Q.-X. Guo L. Angew. Chem. Int. Ed. 2009; 48: 7398