Synthesis 2018; 50(07): 1462-1470
DOI: 10.1055/s-0036-1591526
paper
© Georg Thieme Verlag Stuttgart · New York

Organocatalytic γ′[C(sp3)–H] Functionalization of Ynones: An Unusual Approach for the Cyclopentannulation of Benzothiophenes

Jagdeep Grover
,
Moluguri Raghu
,
Raju Hazra
Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab 140306, India   Email: ramsastry@iisermohali.ac.in
,
Atanu Mondal
Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab 140306, India   Email: ramsastry@iisermohali.ac.in
,
Organic Synthesis and Catalysis Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, S. A. S. Nagar, Manauli PO, Punjab 140306, India   Email: ramsastry@iisermohali.ac.in
› Author Affiliations
Further Information

Publication History

Received: 15 September 2017

Accepted after revision: 04 December 2017

Publication Date:
16 January 2018 (online)


Abstract

An efficient organocatalytic approach for the cyclopenta[b]annulation of benzothiophenes via γ′[C(sp3)–H] functionalization of ynones is described. Nucleophilic addition of an organophosphine to the designed ynones generates heteroaryl-based ortho-quinodimethanes (oQDMs), which undergo carbocyclization to provide a variety of cyclopenta-fused benzothiophenes. This approach also constitutes an unusual organophosphine-catalyzed intramolecular hydroalkylation of ynones.

Supporting Information

 
  • References

  • 1 These authors contributed equally to this article.
    • 2a Jones CD. Jevnikar MG. Pike AJ. Peters MK. Black LJ. Thompson AR. Falcone JF. Clemens JA. J. Med. Chem. 1984; 27: 1057
    • 2b Kong Y.-C. Cheng K.-F. Cambie RC. Waterman PG. J. Chem. Soc., Chem. Commun. 1986; 47
    • 2c Baraznenok IL. Nenajdenko VG. Balenkova ES. Synthesis 1997; 465
    • 2d Takeuchi K. Kohn TJ. Sall DJ. Denney ML. McCowan JR. Smith GF. Gifford-Moore DS. Bioorg. Med. Chem. Lett. 1999; 9: 759
    • 2e Flynn BL. Verdier-Pinard P. Hamel E. Org. Lett. 2001; 3: 651
    • 2f Dallemagne P. Khanh LP. Alsaidi A. Varlet I. Collot V. Paillet M. Bureau R. Rault S. Bioorg. Med. Chem. 2003; 11: 1161
    • 2g Srikrishna A. Ramasastry SS. V. Tetrahedron Lett. 2005; 46: 7373
    • 2h Srikrishna A. Ramasastry SS. V. Tetrahedron Lett. 2006; 47: 335
    • 2i Heasley B. Curr. Org. Chem. 2014; 18: 641
    • 3a Pouchain L. Aleveque O. Nicolas Y. Oger A. Le Regent C.-H. Allain M. Blanchard P. Roncali J. J. Org. Chem. 2009; 74: 1054
    • 3b Choi Y. Chatterjee T. Kim J. Kim JS. Cho EJ. Org. Biomol. Chem. 2016; 14: 6804 , and references cited therein
    • 4a Ferreira EM. Stoltz BM. J. Am. Chem. Soc. 2003; 125: 9578
    • 4b Malona JA. Colbourne JM. Frontier AJ. Org. Lett. 2006; 8: 5661
    • 4c Yadav AK. Peruncheralathan S. Ila H. Junjappa H. J. Org. Chem. 2007; 72: 1388
    • 4d Ferrer C. Amijs CH. M. Echavarren AM. Chem. Eur. J. 2007; 13: 1358
    • 4e Balskus EP. Walsh CT. J. Am. Chem. Soc. 2009; 131: 14648
    • 4f Tseng N.-W. Lautens M. J. Org. Chem. 2009; 74: 1809
    • 4g John J. Indu U. Suresh E. Radhakrishnan KV. J. Am. Chem. Soc. 2009; 131: 5042
    • 4h Saito K. Sogou H. Suga T. Kusama H. Iwasawa N. J. Am. Chem. Soc. 2011; 133: 689
    • 4i Chen B. Fan W. Chai G. Ma S. Org. Lett. 2012; 14: 3616
    • 4j Xu B. Guo Z.-L. Jin W.-Y. Wang Z.-P. Peng Y.-G. Guo Q.-X. Angew. Chem. Int. Ed. 2012; 51: 1059
    • 4k Jacob SD. Brooks JL. Frontier AJ. J. Org. Chem. 2014; 79: 10296
    • 4l Satpathi B. Dhiman S. Ramasastry SS. V. Eur. J. Org. Chem. 2014; 2022
    • 4m Zi W. Wu H. Toste FD. J. Am. Chem. Soc. 2015; 137: 3225
    • 4n Feldman KS. Gonzalez IY. Glinkerman CM. J. Org. Chem. 2015; 80: 11849
    • 4o Kotha S. Chinnam AK. Ali R. Beilstein J. Org. Chem. 2015; 11: 1123
    • 4p Dhiman S. Ramasastry SS. V. Org. Lett. 2015; 17: 5116
    • 4q Manisha Dhiman S. Ramasastry SS. V. Chem. Commun. 2015; 51: 557
    • 4r Dhiman S. Mathew J. Ramasastry SS. V. Org. Biomol. Chem. 2016; 14: 5563
    • 4s Satpathi B. Ramasastry SS. V. Synlett 2016; 27: 2178

      Selected articles on phosphine catalysis:
    • 5a Lu X. Zhang C. Xu Z. Acc. Chem. Res. 2001; 34: 535
    • 5b Valentine DH. Hillhouse JH. Synthesis 2003; 317
    • 5c Methot JL. Roush WR. Adv. Synth. Catal. 2004; 346: 1035
    • 5d Lu X. Du Y. Lu C. Pure Appl. Chem. 2005; 77: 1985
    • 5e Nair V. Menon RS. Sreekanth AR. Abhilash N. Biju AT. Acc. Chem. Res. 2006; 39: 520
    • 5f Ye L.-W. Zhou J. Tang Y. Chem. Soc. Rev. 2008; 37: 1140
    • 5g Kinderman SS. van Maarseveen JH. Hiemstra H. Synlett 2011; 1693
    • 5h Li E. Huang Y. Liang L. Xie P. Org. Lett. 2013; 15: 3138
    • 5i Gicquel M. Gomez C. Retailleau P. Voituriez A. Marinetti A. Org. Lett. 2013; 15: 4002
    • 5j Xiao Y. Sun Z. Guo H. Kwon O. Beilstein J. Org. Chem. 2014; 10: 2089
    • 5k Wang T. Han X. Zhong F. Yao W. Lu Y. Acc. Chem. Res. 2016; 49: 1369
  • 6 Kuroda H. Tomita I. Endo T. Org. Lett. 2003; 5: 129
  • 7 Wilson JE. Sun J. Fu GC. Angew. Chem. Int. Ed. 2010; 49: 161
  • 8 Lian Z. Shi M. Eur. J. Org. Chem. 2012; 581
    • 9a Yang L. Xie P. Li E. Li X. Huang Y. Chen R. Org. Biomol. Chem. 2012; 10: 7628
    • 9b Liang L. Li E. Xie P. Huang Y. Chem. Asian J. 2014; 9: 1270
    • 10a Ramachary DB. Venkaiah C. Krishna PM. Org. Lett. 2013; 15: 4714
    • 10b Ramachary DB. Krishna PM. Reddy TP. Org. Biomol. Chem. 2016; 14: 6413
  • 11 Zhu L. Xiong Y. Li C. J. Org. Chem. 2015; 80: 628
  • 12 Raghu M. Grover J. Ramasastry SS. V. Chem. Eur. J. 2016; 22: 18316

    • For selected reviews on metal-catalyzed C(sp3)–H activation, see:
    • 13a Campos KR. Chem. Soc. Rev. 2007; 36: 1069
    • 13b Bellina F. Rossi R. Chem. Rev. 2010; 110: 1082
    • 13c Li BJ. Shi ZJ. Chem. Soc. Rev. 2012; 41: 5588
    • 13d Zhang W. Wang N.-X. Xing Y. Synlett 2015; 26: 2088
    • 13e Kwon SJ. Kim DY. Chem. Rec. 2016; 16: 1191
    • 13f Pla D. Gomez M. ACS Catal. 2016; 6: 3537
    • 13g Yang X. Shan G. Wang L. Rao Y. Tetrahedron Lett. 2016; 57: 819

    • For selected articles on organocatalytic C(sp3)–H functionalizations, see:
    • 13h Schreiner PR. Fokin AA. Chem. Rec. 2004; 3: 247
    • 13i Park YJ. Park J.-W. Jun C.-H. Acc. Chem. Res. 2008; 41: 222
    • 13j Xie J. Jiang H. Cheng Y. Zhu C. Chem. Commun. 2012; 48: 979
    • 13k Pan SC. Beilstein J. Org. Chem. 2012; 8: 1374
    • 13l Jiao Z.-W. Zhang S.-Y. He C. Tu Y.-Q. Wang S.-H. Zhang F.-M. Zhang Y.-Q. Li H. Angew. Chem. Int. Ed. 2012; 51: 8811
    • 13m Chen X. Yang S. Song B.-A. Chi YR. Angew. Chem. Int. Ed. 2013; 52: 11134
    • 13n Wang L. Xiao J. Adv. Synth. Catal. 2014; 356: 1137
    • 13o Zheng C. You S.-L. RSC Adv. 2014; 4: 6173
    • 13p Qvortrup K. Rankic DA. MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 626
    • 13q Muramatsu W. Nakano K. Org. Lett. 2015; 17: 1549
    • 13r Reddi Y. Sunoj RB. ACS Catal. 2015; 5: 5794
    • 13s Borie C. Ackermann L. Nechab M. Chem. Soc. Rev. 2016; 45: 1368
    • 14a Jia ZJ. Jiang H. Li J.-L. Gschwend B. Li Q.-Z. Yin X. Grouleff J. Chen Y.-C. Jørgensen KA. J. Am. Chem. Soc. 2011; 133: 5053
    • 14b Jia ZJ. Zhou Q. Zhou Q.-Q. Chen P.-Q. Chen Y.-C. Angew. Chem. Int. Ed. 2011; 50: 8638
    • 14c Liu Y. Nappi M. Arceo E. Vera S. Melchiorre P. J. Am. Chem. Soc. 2011; 133: 15212
    • 14d Liu Y. Nappi M. Escudero-Adan EC. Melchiorre P. Org. Lett. 2012; 14: 1310
    • 15a Chen X. Yang S. Song B.-A. Chi YR. Angew. Chem. Int. Ed. 2013; 52: 11134
    • 15b Xu J. Yuan S. Miao M. Org. Lett. 2016; 18: 3822
  • 16 Zhou L. Bing Xu B. Zhang J. Angew. Chem. Int. Ed. 2015; 54: 9092

    • For some interesting organocatalytic versions involving oQDM intermediates, see:
    • 17a Raja A. Hong B.-C. Lee GH. Org. Lett. 2014; 16: 5756
    • 17b Dell’Amico L. Vega-Peñaloza A. Cuadros S. Melchiorre P. Angew. Chem. Int. Ed. 2016; 55: 3313
    • 17c Chintalapudi V. Galvin EA. Greenaway RL. Anderson EA. Chem. Commun. 2016; 52: 693
  • 18 Satpathi B. Ramasastry SS. V. Angew. Chem. Int. Ed. 2016; 55: 1777
    • 19a Chung YK. Fu GC. Angew. Chem. Int. Ed. 2009; 48: 2225
    • 19b Silva F. Sawicki M. Gouverneur V. Org. Lett. 2006; 8: 5417
    • 19c Schuler M. Monney A. Gouverneur V. Synlett 2009; 1733
  • 20 Although a number of methods have been used previously to calculate pKa values, we adopted the protocol established by Shields, which, using a continuum solvation model, allows predictions to be made for compounds in solution. For details, see the Supporting Information.

    • For pKa studies aimed at addressing experimental observations, see:
    • 21a Tajuddin H. Harrisson P. Bitterlich B. Collings JC. Sim N. Batsanov AS. Cheung MS. Kawamorita S. Maxwell AC. Shukla L. Morris J. Lin Z. Marder TB. Steel PG. Chem. Sci. 2012; 3: 3505
    • 21b Su Z. Kim CK. New J. Chem. 2013; 37: 3920
    • 21c Khursan SL. Ovchinnikov MY. J. Phys. Org. Chem. 2014; 27: 926
  • 22 Iddon B. Dickinson RP. J. Chem. Soc. C 1968; 2733
  • 23 Tabuchi S. Hirano K. Satoh T. Miura M. J. Org. Chem. 2014; 79: 5401
  • 24 Malamas MS. Sredy J. Moxham C. Katz A. Xu W. Mcdevitt R. Adebayo FO. Sawicki DR. Seestaller L. Sullivan D. Taylor JR. J. Med. Chem. 2000; 43: 1293