Synlett 2018; 29(05): 663-667
DOI: 10.1055/s-0036-1591520
letter
© Georg Thieme Verlag Stuttgart · New York

C(sp3)–H Peroxidation of 3-Substituted Indolin-2-ones under Metal-Free Conditions

Wei-Wei Ying
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: weiwenting@nbu.edu.cn
,
Wen-Ming Zhu
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: weiwenting@nbu.edu.cn
,
Zhanghua Gao
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: weiwenting@nbu.edu.cn
,
Hongze Liang
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: weiwenting@nbu.edu.cn
,
Wen-Ting Wei*
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   Email: weiwenting@nbu.edu.cn
› Author Affiliations
This research is sponsored by research funds of NBU (No. ZX2016000706), foundation of Ningbo University (No. XYL17009), and the K. C. Wong Magna Fund in Ningbo University. Prof. Z. H. Gao also thanks the Natural Science Foundation of Ningbo City (No. 2016A610080).
Further Information

Publication History

Received: 09 September 2017

Accepted after revision: 29 October 2017

Publication Date:
11 December 2017 (eFirst)

These authors contributed equally to this work

Abstract

A C(sp3)–H peroxidation of 3-substituted indolin-2-ones through radical coupling reaction has been developed under metal-free conditions. Using tert-butyl hydroperoxide both as an oxidant and as a peroxidation reagent to couple with the C(sp3)–H bonds of 3-substituted indolin-2-ones can form a new C–O bond without using any additives. This simple strategy provides a green and efficient approach to 3-peroxyindolin-2-ones in moderate to excellent yields. The resulting 3-peroxyindolin-2-ones could be further transformed into 3-hydroxy­indolin-2-ones.

Supporting Information

 
  • References and Notes

    • 1a Godula K. Sames D. Science 2006; 312: 67
    • 1b Baran PS. Ishihara Y. Synlett 2010; 1733
    • 1c Newhouse T. Baran PS. Angew. Chem. Int. Ed. 2011; 50: 3362
    • 1d Davies HM. L. Bois JD. Yu J.-Q. Chem. Soc. Rev. 2011; 40: 1855
    • 1e Wenzel MN. Owens PK. Bray JT. W. Lynam JM. Aguiar PM. Reed C. Lee JD. Hamilton JF. Whitwood AC. Fairlamb IJ. S. J. Am. Chem. Soc. 2017; 139: 1177
    • 1f Guo S.-R. Kumar PS. Yang M.-H. Adv. Synth. Catal. 2017; 1: 2
    • 2a Baudoin O. Acc. Chem. Res. 2017; 50: 1114
    • 2b Yang D. J. Am. Chem. Soc. 2015; 137: 1130
    • 2c Kim JH. Greßies S. Mélissa B.-A. Daniliuc C. Glorius F. ACS Catal. 2016; 6: 7652
    • 2d Zhu Q.-H. Ji D.-Z. Liang T.-T. Wang X.-Y. Xu Y.-G. Org. Lett. 2015; 17: 3798
    • 3a Fan R. Li W. Pu D. Zhang L. Org. Lett. 2009; 11: 1425
    • 3b Ochiai M. Miyamoto K. Kaneaki T. Hayashi S. Nakanishi W. Science 2011; 332: 448
    • 3c Kantak AA. Potavathri S. Barham RA. Romano KM. DeBoef B. J. Am. Chem. Soc. 2011; 133: 19960
    • 3d Shirakawa E. Hayashi T. Chem. Lett. 2012; 41: 130
    • 3e Hari DP. Schroll P. König B. J. Am. Chem. Soc. 2012; 134: 2958
    • 3f Souto JA. Zian D. Muñiz K. J. Am. Chem. Soc. 2012; 134: 7242
    • 3g Luo W.-K. Shi X. Zhou W. Yang L. Org. Lett. 2016; 18: 2036
    • 3h Chaudhari MB. Sutar Y. Malpathak S. Hazra A. Gnanaprakasam B. Org. Lett. 2017; 19: 3628
    • 4a Sun C.-L. Li H. Yu D.-G. Yu M. Zhou X. Lu X.-Y. Huang K. Zheng S.-F. Li B.-J. Shi Z.-J. Nat. Chem. 2010; 2: 1044
    • 4b Shirakawa E. Itoh K. Higashino T. Hayashi T. J. Am. Chem. Soc. 2010; 132: 15537
    • 4c Liu W. Cao H. Zhang H. Zhang H. Chung KH. He C. Wang H. Kwong FY. Lei A. J. Am. Chem. Soc. 2010; 132: 16737
    • 5a Jefford CW. Curr. Top. Med. Chem. 2012; 12: 373
    • 5b Yadav N. Sharma C. Awasthi SK. RSC Adv. 2014; 4: 5469
    • 5c Hao HD. Wittlin S. Wu Y. Chem. Eur. J. 2013; 19: 7605
  • 6 Ingram K. Yaremenko IA. Krylov IB. Hofer L. Terent’ev AO. Keiser J. J. Med. Chem. 2012; 55: 8700
    • 7a Kumar N. Sharma M. Rawat DS. Curr. Med. Chem. 2011; 18: 3889
    • 7b Terzić N. Opsenica D. Milić D. Tinant B. Smith KS. Milhous WK. Šolaja BA. J. Med. Chem. 2007; 50: 5118
    • 8a Yang W.-C. Weng S.-S. Ramasamy A. Rajeshwaren G. Liao Y.-Y. Chen C.-T. Org. Biomol. Chem. 2015; 13: 2385
    • 8b Jiang J.-W. Liu J.-J. Yang L. Shao Y. Cheng J. Bao X.-G. Wan X.-B. Chem. Commun. 2015; 51: 14728
    • 8c Banerjee A. Santra SK. Khatun N. Ali W. Patel BK. Chem. Commun. 2015; 51: 15422
    • 8d Liu W.-P. Li Y.-M. Liu K.-S. Li Z.-P. J. Am. Chem. Soc. 2011; 133: 10756
    • 8e Cheng J.-K. Loh T.-P. J. Am. Chem. Soc. 2015; 137: 42
    • 8f Bertrand S.-C. Demaerel J. Engler H. Klussmann M. Angew. Chem. Int. Ed. 2014; 53: 8737
  • 9 Iwata S. Hata T. Urabe H. Adv. Synth. Catal. 2012; 354: 3480
  • 10 Klare HF. T. Goldberg AF. G. Duquette DC. Stoltz BM. Org. Lett. 2017; 19: 988
    • 11a Wei W.-T. Zhu W.-M. Ying W.-W. Wu Y. Huang Y.-L. Liang HZ. Org. Biomol. Chem. 2017; 15: 5254
    • 11b Wei W.-T. Zhu W.-M. Ying W.-W. Wang Y.-N. Bao W.-H. Gao L.-H. Luo Y.-J. Liang HZ. Adv. Synth. Catal. 2017; 359: in press ; DOI: 10.1002/adsc.201700870
  • 12 General Procedure To a Schlenk tube were added 3-substituted indolin-2-ones 1 (0.3 mmol), t-BuOOH (2a, 70% in water, 0.72 mmol), and DCE (2 mL). Then the tube was stirred at 85 °C under air for the indicated time until complete consumption of starting material as monitored by TLC analysis. After the reaction was complete, the solution was concentrated under reduced pressure, and the mixture was purified by flash column chromatography over silica gel (hexane/ethyl acetate) to afford the desired products 3. The products were analyzed by 1H NMR and 13C NMR spectroscopy, and mass spectrometry (see Supporting Information). Typical Data for Representative Compound: 3-(tert-Butylperoxy)-3-phenylindolin-2-one (3a) White solid (0.0811 g, 91% yield). 1H NMR (400 MHz, CDCl3): δ = 8.62 (s, 1 H), 7.45–7.43 (m, 2 H), 7.34–7.25 (m, 5 H), 7.08 (t, J = 8.0 Hz, 1 H), 6.90 (d, J = 7.6 Hz, 1 H), 1.19 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ= 176.3, 141.7, 136.0, 129.8, 129.0, 128.9, 128.5, 127.0, 126.5, 122.6, 110.2, 86.5, 80.9, 26.6. IR (KBr): 1678, 1113, 864 cm–1. ESI-HRMS: m/z calcd for C18H20NO3 [M + H]+: 298.1438; found: 298.1434.
    • 13a Cheng J.-K. Loh T.-P. J. Am. Chem. Soc. 2015; 137: 42
    • 13b Dai P. Dussault PH. Trullinger TK. J. Org. Chem. 2004; 69: 2851
  • 14 Ratnikov MO. Farkas LE. McLaughlin EC. Chiou G. Choi H. El-Khalafy SH. Doyle MP. J. Org. Chem. 2011; 76: 2585
    • 15a Zhang X. Wang L. Green Chem. 2012; 14: 2141
    • 15b Zhang X. Wang M. Zhang Y. Wang L. RSC Adv. 2013; 3: 1311
    • 15c Zi Y. Cai Z. Wang S. Ji S. Org. Lett. 2014; 16: 3094
    • 15d Du B. Jin B. Sun P. Org. Biomol. Chem. 2014; 12: 4586
    • 15e Zhang H. Dong D. Hao S. Wang Z. RSC Adv. 2016; 6: 8465
    • 16a Shu Z. Ye Y. Deng Y. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2013; 52: 10573
    • 16b Hashemi H. Saberi D. Poorsadeghic S. Niknam K. RSC Adv. 2017; 7: 7619
    • 17a Wei W.-T. Yang X.-H. Li H.-B. Li J.-H. Adv. Synth. Catal. 2015; 357: 59
    • 17b Chen X.-L. Li Y. Wu M.-H. Guo H.-B. Jiang L.-Q. Wang J. Sun S.-F. RSC Adv. 2016; 6: 102023