Synlett 2018; 29(04): 440-446
DOI: 10.1055/s-0036-1591517
letter
© Georg Thieme Verlag Stuttgart · New York

Thieme Chemistry Journals Awardees – Where Are They Now? ­Ribosylation of an Acid-Labile Glycosyl Acceptor as a Potential Key Step for the Synthesis of Nucleoside Antibiotics

Daniel Wiegmann
a   Saarland University, Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Campus C2 3, 66123 Saarbrücken, Germany   Email: christian.ducho@uni-saarland.de
,
Anatol P. Spork
b   Georg-August-University Göttingen, Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077 Göttingen, Germany
,
a   Saarland University, Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Campus C2 3, 66123 Saarbrücken, Germany   Email: christian.ducho@uni-saarland.de
,
a   Saarland University, Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Campus C2 3, 66123 Saarbrücken, Germany   Email: christian.ducho@uni-saarland.de
b   Georg-August-University Göttingen, Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077 Göttingen, Germany
› Author Affiliations
We thank the Deutsche Forschungsgemeinschaft (DFG, SFB 803 ‘Functionality controlled by organization in and between membranes’ and grant DU 1095/5-1) and the Fonds der Chemischen Industrie (FCI, Sachkostenzuschuss) for financial support. D. W. is grateful for a doctoral fellowship of the Konrad-Adenauer-Stiftung. G. N. is grateful for a doctoral fellowship of the FCI.
Further Information

Publication History

Received: 05 October 2017

Accepted after revision: 06 October 2017

Publication Date:
12 December 2017 (online)


Dedicated to Professor Joachim Thiem on the occasion of his birthday.

Abstract

Naturally occurring nucleoside antibiotics (e.g., muraymycins and caprazamycins) represent attractive lead structures for the development of urgently needed novel antibacterial agents. One major challenge in the total synthesis of muraymycins, caprazamycins, and their analogues is the efficient construction of the densely functionalized aminoribosylated uridine-derived core unit. In order to avoid tedious protecting-group manipulations, we have aimed to conduct the aminoribosylation step with an acid-labile glycosyl acceptor. Therefore, different glycosylation approaches have been studied, with pentenyl glycosides giving the best results.

Supporting Information

 
  • References and Notes

  • 2 Walsh C. Nat. Rev. Microbiol. 2003; 1: 65
    • 3a Dini C. Curr. Top. Med. Chem. 2005; 5: 1221
    • 3b Bugg TD. H. Lloyd AJ. Roper DI. Infect. Disord.: Drug Targets 2006; 6: 85

      Selected studies on MraY:
    • 4a Brandish PE. Burnham MK. Lonsdale JT. Southgate R. Inukai M. Bugg TD. H. J. Biol. Chem. 1996; 271: 7609
    • 4b Bouhss A. Crouvoisier M. Blanot D. Mengin-Lecreulx D. J. Biol. Chem. 2004; 279: 29974
    • 4c Ma Y. Münch D. Schneider T. Sahl H.-G. Bouhss A. Ghoshdastider U. Wang J. Dötsch V. Wang X. Bernhard F. J. Biol. Chem. 2011; 286: 38844
    • 4d Rodolisa MT. Mihalyi A. Ducho C. Eitel K. Gust B. Goss RJ. M. Bugg TD. H. Chem. Commun. 2014; 50: 13023
    • 4e Chung BC. Zhao J. Gillespie RA. Kwon D.-Y. Guan Z. Hong J. Zhou P. Lee S.-Y. Science 2013; 341: 1012
    • 4f Chung BC. Mashalidis EH. Tanino T. Kim M. Matsuda A. Hong J. Ichikawa S. Lee S.-Y. Nature 2016; 533: 557

      Selected reviews:
    • 5a Winn M. Goss RJ. M. Kimura K.-I. Bugg TD. H. Nat. Prod. Rep. 2010; 27: 279
    • 5b Ichikawa S. Yamaguchi M. Matsuda A. Curr. Med. Chem. 2015; 22: 3951
    • 5c Wiegmann D. Koppermann S. Wirth M. Niro G. Leyerer K. Ducho C. Beilstein J. Org. Chem. 2016; 12: 769
    • 5d Bugg TD. H. Rodolis MT. Mihalyi A. Jamshidi S. Bioorg. Med. Chem. 2016; 24: 6340
  • 6 McDonald LA. Barbieri LR. Carter GT. Lenoy E. Lotvin J. Petersen PJ. Siegel MM. Singh G. Williamson RT. J. Am. Chem. Soc. 2002; 124: 10260
  • 7 Igarashi M. Nakagawa N. Doi S. Hattori N. Naganawa H. Hamada M. J. Antibiot. 2003; 56: 580

    • Biosynthesis of the GlyU unit:
    • 8a Chi X. Pahari P. Nonaka K. Van Lanen SG. J. Am. Chem. Soc. 2011; 133: 14452
    • 8b Barnard-Britson S. Chi X. Nonaka K. Spork AP. Tibrewal N. Goswami A. Pahari P. Ducho C. Rohr J. Van Lanen SG. J. Am. Chem. Soc. 2012; 134: 18514

      Selected publications:
    • 9a Tanino T. Ichikawa S. Al-Dabbagh B. Bouhss A. Oyama H. Matsuda A. ACS Med. Chem. Lett. 2010; 1: 258
    • 9b Tanino T. Al-Dabbagh B. Mengin-Lecreulx D. Bouhss A. Oyama H. Ichikawa S. Matsuda A. J. Med. Chem. 2011; 54: 8421
    • 9c Spork AP. Büschleb M. Ries O. Wiegmann D. Boettcher S. Mihalyi A. Bugg TD. Ducho C. Chem. Eur. J. 2014; 20: 15292

      Selected publications:
    • 10a Ii K. Ichikawa S. Al-Dabbagh B. Bouhss A. Matsuda A. J. Med. Chem. 2010; 53: 3793
    • 10b Ishizaki Y. Hayashi C. Inoue K. Igarashi M. Takahashi Y. Pujari V. Crick DC. Brennan PJ. Nomoto A. J. Biol. Chem. 2013; 288: 30309
    • 10c Nakaya T. Matsuda A. Ichikawa S. Org. Biomol. Chem. 2015; 13: 7720
    • 11a Tanino T. Ichikawa S. Shiro M. Matsuda A. J. Org. Chem. 2010; 75: 1366
    • 11b Spork AP. Koppermann S. Dittrich B. Herbst-Irmer R. Ducho C. Tetrahedron: Asymmetry 2010; 21: 763
    • 11c Mitachi K. Aleiwi BA. Schneider CM. Siricilla S. Kurosu M. J. Am. Chem. Soc. 2016; 138: 12975
    • 12a Hirano S. Ichikawa S. Matsuda A. J. Org. Chem. 2008; 73: 569
    • 12b Sarabia F. Vivar-García C. García-Ruiz C. Martín-Ortiz L. Romero-Carrasco A. J. Org. Chem. 2012; 77: 1328
    • 12c Nakamura H. Tsukano C. Yasui M. Yokouchi S. Igarashi M. Takemoto Y. Angew. Chem. Int. Ed. 2015; 54: 3136
    • 12d Abe H. Gopinath P. Ravi G. Wang L. Watanabe T. Shibasaki M. Tetrahedron Lett. 2015; 56: 3782
    • 13a Hirano S. Ichikawa S. Matsuda A. J. Org. Chem. 2007; 72: 9936
    • 13b Gopinath P. Wang L. Abe H. Ravi G. Masuda T. Watanabe T. Shibasaki M. Org. Lett. 2014; 16: 3364
  • 14 Spork AP. Ducho C. Synlett 2013; 24: 343
  • 15 Brechbühler H. Büchi H. Hatz E. Schreiber J. Eschenmoser A. Helv. Chim. Acta 1965; 48: 1746
  • 16 Naresh K. Bharati BK. Avaji PG. Chatterji D. Jayaraman N. Glycobiology 2011; 21: 1237
    • 17a Chiara JL. Encinas L. Díaz B. Tetrahedron Lett. 2005; 46: 2445
    • 17b Tomoi M. Kato Y. Kakiuchi H. Makromol. Chem. 1984; 185: 2117
  • 18 Gravier-Pelletier C. Ginisty M. Le Merrer Y. Tetrahedron: Asymmetry 2004; 15: 189
    • 19a Schmidt RR. Michel J. Angew. Chem., Int. Ed. Engl. 1980; 19: 731
    • 19b Schmidt RR. Castro-Palomino JC. Retz O. Pure Appl. Chem. 1999; 71: 729
    • 19c Guyenne S. León EI. Martín A. Pérez-Martín I. Suárez E. J. Org. Chem. 2012; 77: 7371
  • 20 Gelin M. Ferrieres V. Plusquellec D. Eur. J. Org. Chem. 2000; 1423
    • 21a Ravenscroft M. Roberts RM. Tillett JG. J. Chem. Soc., Perkin Trans. 2 1982; 1569
    • 21b Mannerstedt K. Ekelöf K. Oscarson S. Carbohydr. Res. 2007; 342: 631
  • 22 Ludewig M. Thiem J. Synthesis 1998; 56
  • 23 Zhang Y. Knapp S. J. Org. Chem. 2016; 81: 2228
    • 24a Fraser-Reid B. Udodong UE. Wu Z. Ottosson H. Merritt JR. Rao CS. Roberts C. Madsen R. Synlett 1992; 927
    • 24b Fraser-Reid B. Merritt JR. Handlon AL. Andrews CW. Pure Appl. Chem. 1993; 65: 779
  • 25 Synthesis of Protected Ribosylated (5′S,6′S)-GlyU 4To a solution of the glycosyl donor β-18 (20.1 mg, 64.5 μmol) and the (5′S,6′S)-GlyU-derived acceptor 2 (35.6 mg, 48.4 μmol) in CH2Cl2 (3 mL) with freshly activated molecular sieves (4 Å), NIS (18.9 mg, 83.9 μmol) was added at r.t. under exclusion of light. Over 10 min, TESOTf (5.8 μL, 26 μmol, 1% solution in CH2Cl2) was added dropwise. The reaction mixture was stirred at r.t. for 15 min before ice (5 g) was added and the mixture was allowed to warm to r.t. again. It was then diluted with CH2Cl2 (70 mL) and the organic layer was washed with 10% Na2S2O3 solution (1 × 70 mL), sat. NaHCO3 solution (1 × 70 mL), and brine (1 × 70 mL). The organic layer was dried over Na2SO4, and the solvent was evaporated under reduced pressure. The resultant crude product was purified by column chromatography (PE–EtOAc, 75:25 → 70:30) to give 4 (16.6 mg, 36%, 58% brsm) as a colorless solid; mp 72 °C. TLC: Rf = 0.28 (i-hexane–EtOAc, 7:3). [α]D 20 –7.0 (c 0.7, CHCl3). 1H NMR (500 MHz, CDCl3): δ = 0.07 (s, 3 H, SiCH3), 0.08 (s, 3 H, SiCH3), 0.09 (s, 3 H, SiCH3), 0.13 (s, 3 H, SiCH3), 0.83 (t, J = 7.5 Hz, 3 H, 1iv-H), 0.88 (t, J = 7.5 Hz, 3 H, 5iv-H), 0.90 (s, 9 H, SiC(CH3)3), 0.90 (s, 9 H, SiC(CH3)3), 1.45 (s, 9 H, OC(CH3)3), 1.53 (q, J = 7.4 Hz, 2 H, 2iv-H), 1.66 (dq, J = 7.4, 1.8 Hz, 2 H, 4iv-H), 3.55 (dd, J = 13.0, 4.0 Hz, 1 H, 5′′′-Ha), 3.72 (dd, J = 13.0, 3.9 Hz, 1 H, 5′′′-Hb), 3.94 (dd, J = 5.7, 4.1 Hz, 1 H, 3′-H), 4.13 (dd, J = 5.7, 2.3 Hz, 1 H, 4′-H), 4.16 (dd, J = 4.1, 3.6 Hz, 1 H, 2′-H), 4.31–4.34 (m, 1 H, 4′′′-H), 4.39 (dd, J = 2.3, 1.9 Hz, 1 H, 5′-H), 4.48 (d, J = 6.3 Hz, 1 H, 2′′′-H), 4.51 (dd, J = 9.2, 1.9 Hz, 1 H, 6′-H), 4.64 (dd, J = 6.3, 1.4 Hz, 1 H, 3′′′-H), 4.97 (d, J = 12.1 Hz, 1 H, 1′′-Ha), 5.14 (s, 1 H, 1′′′-H), 5.24 (d, J = 12.1 Hz, 1 H, 1′′-Hb), 5.44 (d, J = 3.6 Hz, 1 H, 1′-H), 5.60 (dd, J = 8.2, 2.1 Hz, 1 H, 5-H), 6.15 (d, J = 9.2 Hz, 1 H, 6′-NH), 7.24–7.36 (m, 5 H, aryl-H), 7.82 (d, J = 8.2 Hz, 1 H, 6-H), 8.02 (d, J = 2.1 Hz, 1 H, 3-NH). 13C NMR (126 MHz, CDCl3): δ = –4.9, –4.8, –4.2, –3.9, 7.6, 8.5, 18.1, 18.2, 26.0, 26.0, 28.1, 28.9, 29.4, 53.5, 56.5, 67.0, 71.5, 74.8, 77.8, 81.8, 82.7, 85.3, 86.0, 86.4, 90.6, 101.1, 112.3, 117.9, 128.3, 128.4, 127.7, 136.8, 140.8, 149.9, 156.4, 162.9, 168.8. HRMS (ESI+): m/z calcd for C45H73N6O13Si2: 961.4769 [M + H]+; found: 961.4778. IR (ATR): ν = 2930, 2857, 2104, 1685, 1457, 1253, 1160, 1059, 835, 775 cm–1. UV (MeCN): λmax = 261 nm.
    • 26a Lu J. Fraser-Reid B. Org. Lett. 2004; 6: 3051
    • 26b Lu J. Fraser-Reid B. Chem. Commun. 2005; 862