Synlett 2018; 29(06): 727-730
DOI: 10.1055/s-0036-1591511
cluster
© Georg Thieme Verlag Stuttgart · New York

Activation of a Carbon–Carbon Bond in Internal Alkynes: Vinylidene Rearrangement of Disubstituted Alkynes at an Ir Complex

Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan   Email: yo-ishii@kc.chuo-u.ac.jp
,
Shuhei Takamori
Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan   Email: yo-ishii@kc.chuo-u.ac.jp
,
Satoshi Kishi
Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan   Email: yo-ishii@kc.chuo-u.ac.jp
,
Takahiro Watanabe
Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan   Email: yo-ishii@kc.chuo-u.ac.jp
,
Yousuke Ikeda
Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan   Email: yo-ishii@kc.chuo-u.ac.jp
,
Shintaro Kodama
Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan   Email: yo-ishii@kc.chuo-u.ac.jp
,
Yasunori Minami
Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan   Email: yo-ishii@kc.chuo-u.ac.jp
,
Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan   Email: yo-ishii@kc.chuo-u.ac.jp
,
Youichi Ishii*
Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan   Email: yo-ishii@kc.chuo-u.ac.jp
› Author Affiliations
This research was supported financially by JST ACT-C (No. JPMJCR12Z1).
Further Information

Publication History

Received: 04 September 2017

Accepted after revision: 04 October 2017

Publication Date:
26 October 2017 (online)


Published as part of the Cluster C–C Activation

Abstract

Reactions of [Cp*Ir(PPh3)Cl2] with various internal acyl­alkynes in the presence of NaBArF 4 resulted in the selective formation of iridacycles via vinylidene rearrangement. 13C-labeling experiments revealed that the acyl group selectively migrates to the other acetylenic carbon atom. This trend is the same as that in the vinylidene rearrangement of internal alkynes at a group 8 metal center.

Supporting Information

 
  • References and Notes

    • 1a Bruneau C. Dixneuf PH. Acc. Chem. Res. 1999; 32: 311
    • 1b McDonald FE. Chem. Eur. J. 1999; 5: 3103
    • 1c Trost BM. Toste FD. Pinkerton AB. Chem. Rev. 2001; 101: 2067
    • 1d Bruneau C. Dixneuf PH. Angew. Chem. Int. Ed. 2006; 45: 2176
    • 1e Varela JA. González-Rodríguez C. Saá C. Top. Organomet. Chem. 2014; 237
    • 1f Bruneau C. Dixneuf PH. In Metal Vinylidenes and Allenylidenes in Catalysis . Wiley-VCH; Weinheim: 2008
    • 2a Werner H. Baum M. Schneider D. Windmueller B. Organometallics 1994; 13: 1089
    • 2b Onitsuka K. Katayama H. Sonogashira K. Ozawa F. J. Chem. Soc., Chem. Commun. 1995; 2267
    • 2c Katayama H. Onitsuka K. Ozawa F. Organometallics 1996; 15: 4642
    • 2d Werner H. Lass RW. Gevert O. Wolf J. Organometallics 1997; 16: 4077
    • 2e Jiménez MV. Sola E. Lahoz FJ. Oro LA. Organometallics 2005; 24: 2722
    • 2f Ilg K. Paneque M. Poveda ML. Rendón N. Santos LL. Carmona E. Mereiter K. Organometallics 2006; 25: 2230
  • 3 Seregin IV. Gevorgyan V. J. Am. Chem. Soc. 2006; 128: 12050
    • 4a Venkatesan K. Blacque O. Fox T. Alfonso M. Schmalle HW. Kheradmandan S. Berke H. Organometallics 2005; 24: 920
    • 4b Venkatesan K. Fox T. Schmalle HW. Berke H. Eur. J. Inorg. Chem. 2005; 901
  • 5 Miller DC. Angelici RJ. Organometallics 1991; 10: 79
  • 6 Miura T. Iwasawa N. J. Am. Chem. Soc. 2002; 124: 518
    • 7a Shiba T. Kurahashi T. Matsubara S. J. Am. Chem. Soc. 2013; 135: 13636
    • 7b Kanno H. Nakamura K. Noguchi K. Shibata Y. Tanaka K. Org. Lett. 2016; 18: 1654
    • 8a King PJ. Knox SA. R. Legge MS. Orpen AG. Wilkinson JN. Hill EA. J. Chem. Soc., Dalton Trans. 2000; 1547
    • 8b Shaw MJ. Bryant SW. Rath N. Eur. J. Inorg. Chem. 2007; 3943
    • 8c de los Ríos I. Bustelo E. Puerta MC. Valerga P. Organometallics 2010; 29: 1740
    • 8d Singh VK. Bustelo E. de los Ríos I. Macías-Arce I. Puerta MC. Valerga P. Ortuño M. Á. Ujaque G. Lledós A. Organometallics 2011; 30: 4014
    • 8e Fernández FE. Puerta M. dC. Valerga P. Inorg. Chem. 2013; 52: 6502
    • 9a Ikeda Y. Yamaguchi T. Kanao K. Kimura K. Kamimura S. Mutoh Y. Tanabe Y. Ishii Y. J. Am. Chem. Soc. 2008; 130: 16856
    • 9b Mutoh Y. Ikeda Y. Kimura Y. Ishii Y. Chem. Lett. 2009; 38: 534
    • 9c Mutoh Y. Imai K. Kimura Y. Ikeda Y. Ishii Y. Organometallics 2011; 30: 204
    • 9d Mutoh Y. Kimura Y. Ikeda Y. Tsuchida N. Takano K. Ishii Y. Organometallics 2012; 31: 5150
    • 9e Ikeda Y. Mutoh Y. Imai K. Tsuchida N. Takano K. Ishii Y. Organometallics 2013; 32: 4353
  • 10 Watanabe T. Mutoh Y. Saito S. J. Am. Chem. Soc. 2017; 139: 7749
  • 11 Ikeda Y. Kodama S. Tsuchida N. Ishii Y. Dalton Trans. 2015; 44: 17448
  • 12 Sun R. Zhang S. Chu X. Zhu B. Organometallics 2017; 36: 1133
  • 13 Yakelis NA. Bergman RG. Organometallics 2005; 24: 3579
  • 14 The following procedure for the synthesis of 2a is representative. In a 20 mL Schlenk flask, a mixture of [Cp*IrCl2(PPh3)] (1, 29.8 mg, 45.1 μmol), NaBArF 4·2H2O (46.1 mg, 50.0 μmol) and PhC≡CCOOEt (31.9 mg, 183 μmol) in C2H4Cl2 (2.5 mL) was stirred at 70 °C for 30 min. The reaction was monitored by means of 31P{1H} NMR spectroscopy to confirm complete consumption of 1. The brown suspension obtained was filtered through a pad of Celite. After removing the volatiles under reduced pressure, the residue was dissolved in CH2Cl2 and recrystallized by slow diffusion of hexane. Compound 2a was obtained as yellow crystals in 69% yield (52.0 mg). 1H NMR (500 MHz, CDCl3): δ = 7.75 (s, 8 H, BArF 4), 7.55–7.40 (m, 19 H, BArF 4 + Ph), 7.30 (t, J = 3.7 Hz, 3 H, Ph), 6.75 (m, 2 H, Ph), 4.23 (m, 1 H, CH2CH3), 4.02 (m, 1 H, CH2CH3), 1.46 (s, 15 H, Cp*), 1.11 (t, J = 7.1 Hz, 3 H, CH2CH3). Selected 13C{1H} NMR (126 MHz, CDCl3): δ = 186.3 (d, 2 J PC = 14 Hz, Ir–C), 184.8 (s, C=O), 96.7 (s, Cp*), 65.4 (s, OCH2), 13.7 (s, CH3), 8.50 (s, Cp*). 31P{1H} NMR (202 MHz, CDCl3): δ 11.3 (s, PPh3). IR (KBr): 1610, 1560 cm–1. Anal. Calcd for C71H52BClF24IrO2P: C, 51.29; H, 3.15. Found: C, 51.23; H, 3.02.
  • 15 For details of the X-ray diffraction analyses, see Supporting Information. Crystallographic data for compounds 2a,gi have been deposited with the Cambridge Crystallographic Data Centre as CCDC 1571053, 1571054, 1571055 and 1571056, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 16 The vinylidene intermediate could not be observed by 31P{1H} NMR analysis of this reaction. In contrast, treatment of 1 with PhC≡CPh at 70 °C in the presence of NaBArF 4 gives a complex which is characterized as a vinylidene complex on the basis of the 13C{1H} NMR [325.9 (d, 2 J PC = 12.0 Hz)] and a preliminary X-ray diffraction study (Figure S7). Further investigation into the vinylidene species derived from intermal alkynes at an iridium center is now under way.
    • 17a Ogata K. Kuge K. Tatsumi K. Yamamoto Y. Chem. Commun. 2002; 128
    • 17b Ogata K. Seta J. Sugawara K. Tsutsumi N. Yamamoto Y. Kuge K. Tatsumi K. Inorg. Chem. Acta 2006; 359: 1549
    • 17c Kumaran E. Sridevi VS. Leong WK. Organometallics 2010; 29: 6417
    • 17d Espada MA. F. Poveda ML. Carmona E. Organometallics 2014; 33: 7164
    • 18a Li X. Incarvito CD. Crabtree RH. J. Am. Chem. Soc. 2003; 125: 3698
    • 18b Li X. Vogel T. Incarvito CD. Crabtree RH. Organometallics 2005; 24: 62
    • 18c Clark GR. Johns PM. Roper WR. Söhnel T. Wright LJ. Organometallics 2011; 30: 129
    • 20a Cristóbal C. García-Rubín S. Hernández YA. López-Serrano J. Paneque M. Posadas CM. Poveda ML. Rendón N. Álvarez E. Organometallics 2010; 29: 5744
    • 20b Wong KN. Mak KH. G. Fan WY. Sridevi VS. Leong WK. J. Organomet. Chem. 2013; 741: 40
    • 20c Tsui W.-K. Chung L.-H. Tsang W.-H. Yeung C.-F. Chiu C.-H. Lo H.-S. Wong C.-Y. Organometallics 2015; 34: 1005
  • 21 For details, see Supporting Information.
    • 22a Otsuka M. Tsuchida N. Ikeda Y. Kimura Y. Mutoh Y. Ishii Y. Takano K. J. Am. Chem. Soc. 2012; 134: 17746
    • 22b Otsuka M. Tsuchida N. Ikeda Y. Lambert N. Nakamura R. Mutoh Y. Ishii Y. Takano K. Organometallics 2015; 34: 3934
    • 23a Sunley GJ. Menanteau P. dC. Adams H. Bailey NA. Maitlis PM. J. Chem. Soc., Dalton Trans. 1989; 2415
    • 23b Werner H. Schulz M. Windmueller B. Organometallics 1995; 14: 3659
    • 23c Albertin G. Antoniutti S. Bacchi A. Pelizzi G. Piasente F. Dalton Trans. 2003; 2881
    • 23d Dirnberger T. Werner H. Organometallics 2005; 24: 5127
    • 23e Werner H. Hohn A. Dziallas M. Dirnberger T. Dalton Trans. 2006; 2597