Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2018; 29(04): 513-518
DOI: 10.1055/s-0036-1591510
DOI: 10.1055/s-0036-1591510
letter
Synthesis of 9,10-Diarylanthracenes via Mg(TMP)2·2LiCl-Mediated Benzyne Generation/[4+2] Cycloaddition and Deoxygenation of 9,10-Epoxyanthracene Intermediates
This work was financially supported by JSPS KAKENHI Grant Numbers 16H01127, 16H00999, 17K05773, 16K04864, a Grant-in aid for Scientific Research (A) (26253001), JST ERATO (JPMJER1301), MEXT (Interdepartmental Doctoral Degree Program for Multidimensional Material Science Leaders), and JSPS predoctoral fellowship (for N.M.).Further Information
Publication History
Received: 01 September 2017
Accepted after revision: 01 October 2017
Publication Date:
01 December 2017 (online)
§ These authors contributed equally
Abstract
A new synthetic route to functionalized 9,10-diarylanthracenes has been developed. 9,10-Epoxyanthracene intermediates were prepared by [4+2] cycloaddition of 1,3-diarylisobenzofuran with a variety of functionalized benzyne intermediates, which were obtained by Mg(TMP)2·2LiCl-mediated benzyne generation. For the cleavage of the resultant 9,10-epoxyanthracene intermediates, we developed mild deoxygenation conditions using a combination of trifluoroacetic acid and Et3SiH. The utility of this sequence was demonstrated by application to the synthesis of 5,7,12,14-tetraphenylpentacene.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/s-0036-1591510.
- Supporting Information
-
References and Notes
- 1 Huang J. Su J.-H. Tian H. J. Mater. Chem. 2012; 22: 10977
- 2 Thelakkat M. Macromol. Mater. Eng. 2002; 287: 442
- 3 Culligan SW. Geng Y. Chen SH. Klubek K. Vaeth KM. Tang CW. Adv. Mater. 2003; 15: 1176
- 4 Bruuner K. Dijken A. Börner H. Bastiaansen JJ. A. M. Kiggen NM. M. Langeveld BM. W. J. Am. Chem. Soc. 2004; 126: 6035
- 5 Pope M. Kallmann HP. Magnante P. J. Chem. Phys. 1963; 38: 2042
- 6 Huang J. Su J.-H. Li X. Lam M.-K. Fung K.-M. Fan H.-H. Cheah K.-W. Chen CH. Tian H. J. Mater. Chem. 2011; 21: 2957
- 7a Lee M.-T. Liao C.-H. Tsai C.-H. Chen C.-H. Adv. Mater. 2005; 17: 2493
- 7b Wang J. Leung LM. Eur. Polymer J. 2013; 49: 3722
- 8a Wang L. Lin M.-F. Wong W.-K. Cheah K.-W. Tam H.-L. Gao Z.-Q. Chen CH. Appl. Phys. Lett. 2007; 91: 183504
- 8b Wang L. Wong W.-Y. Lin M.-F. Wong W.-K. Cheah K.-W. Tam H.-L. Chen CH. J. Mater. Chem. 2008; 18: 4529
- 9 Gong M.-S. Lee H.-S. Jeon Y.-M. J. Mater. Chem. 2010; 20: 10735
- 10a Matsumoto T. Hosoya T. Katsuki M. Suzuki K. Tetrahedron Lett. 1991; 32: 6735
- 10b Uchiyama M. Miyoshi T. Kajihara Y. Sakamoto T. Otani Y. Ohwada T. Kondo Y. J. Am. Chem. Soc. 2002; 124: 8514
- 11a Blank DH. Gribble GW. Tetrahedron Lett. 1997; 38: 4761
- 11b Tobe Y. Saiki S. Naemura K. Tetrahedron Lett. 1995; 36: 939
- 11c Lu J. Ho DM. Vogelaar NJ. Kraml CM. Bernhard S. Byrne N. Kim LR. Pascal RA. Jr. J. Am. Chem. Soc. 2006; 128: 17043
- 11d Dodge JA. Bain JD. Chamberlin AR. J. Org. Chem. 1990; 55: 4190
- 11e Reddy GS. Bhatt MV. Tetrahedron Lett. 1980; 21: 3627
- 12a Iwasa J. Ono K. Fujita M. Akita M. Yoshizawa M. Chem. Commun. 2009; 5746
- 12b Zhang H. Zhang X. Zhang B. Yang W. Mater. Lett. 2009; 63: 2503
- 12c Periasamy M. Beesu M. Shanmugaraja M. Synthesis 2013; 45: 2913
- 12d Hoffend C. Diefenbach M. Januszewski E. Bolte M. Lerner H.-W. Holthausen MC. Wagner M. Dalton Trans. 2013; 42: 13826
- 12e Serevicius T. Komskis R. Adoménas P. Adoméniené O. Jankauskas V. Gruodis A. Kazlauskas K. Jursénas S. Phys. Chem. Chem. Phys. 2014; 16: 7089
- 13a Lyu Y.-Y. Kwak J. Kwon O. Lee S.-H. Kim D. Lee C. Char K. Adv. Mater. 2008; 20: 2720
- 13b Moorthy JN. Venkatakrishnan P. Natarajan P. Huang D.-F. Chow TJ. J. Am. Chem. Soc. 2008; 130: 17320
- 13c Kim Y.-H. Shin D.-C. Kim S.-H. Ko C.-H. Yu H.-S. Chae Y.-S. Kwon S.-K. Adv. Mater. 2001; 13: 1690
- 14a Clososki GC. Rohbogner CJ. Knochel P. Angew. Chem. Int. Ed. 2007; 46: 7681
- 14b Rohbogner CJ. Clososki GC. Knochel P. Angew. Chem. Int. Ed. 2008; 47: 1503
- 14c Rohbogner CJ. Wagner AJ. Clososki GC. Knochel P. Org. Synth. 2009; 86: 374
- 15a Okano K. Fujiwara H. Noji T. Fukuyama T. Tokuyama H. Angew. Chem. Int. Ed. 2010; 49: 5925
- 15b Tokuyama H. Okano K. Fujiwara H. Noji T. Fukuyama T. Chem. Asian J. 2011; 6: 560
- 15c Noji T. Fujiwara H. Okano K. Tokuyama H. Org. Lett. 2013; 15: 1946
- 15d Noro T. Okano K. Tokuyama H. Synlett 2013; 24: 2143
- 15e Oshiyama T. Satoh T. Okano K. Tokuyama H. RSC Adv. 2012; 2: 5147
- 15f Oshiyama T. Satoh T. Okano K. Tokuyama H. Tetrahedron 2012; 68: 9376
- 16a Momoi Y. Okano K. Tokuyama H. Synlett 2014; 25: 2503
- 16b Sun Z. Miyamoto N. Sato S. Tokuyama H. Isobe H. Chem. Asian J. 2017; 12: 271
- 17 A preliminary result of [4+2] cycloaddition of 1,3-(4-bromophenyl)isobenzofuran with benzyne generated by treatment of PhOTf with Mg(TMP)2·2LiCl was reported by our group (ref. 16b).
- 18 A Gram-Scale Preparation of tert-Butyl 9,10-Diphenyl-9,10-epoxy-2-anthracenecarboxylate (3e) A flame-dried 500 mL three-necked round-bottomed flask equipped with a 200 mL dropping funnel, a magnetic stirring bar, a rubber septum, and an inlet adapter with a three-way stopcock was charged with 1,3-diphenylisobenzofuran (2a, 2.16 g, 8.00 mmol), dry THF (20.0 mL), and tert-butyl 4-(trifluoromethylsulfonyloxy)benzoate (1e, 1.23 g, 3.77 mmol). After cooling to –78 °C, Mg(TMP) 2 ·2LiCl (0.16 M in THF, 130 mL, 20 mmol) was added dropwise to the flask, and the resulting mixture was stirred at –78 °C for 1 h. The flask was then immersed in an ice bath, and the mixture was stirred for 11 h, after which time TLC (hexanes–EtOAc = 2:1) indicated complete consumption of tert-butyl 4-(trifluoromethylsulfonyloxy)benzoate (1e). The reaction was quenched by addition of sat. aq NH 4 Cl, and the aqueous layer was extracted with EtOAc three times. The combined organic extracts were successively washed with H 2 O and brine, dried over anhydrous Na 2 SO 4 , and filtered. The organic solvents were removed under reduced pressure to give a crude epoxyanthracene, which was purified by flash column chromatography on silica gel (hexanes–dichloromethane = 1:1) to afford 3e (1.53 g, 3.43 mmol, 91%) as a white solid. R f = 0.18 (hexanes–dichloromethane = 1:1). The spectral data of 3e were in complete agreement with those reported in the literature (ref. 19).
- 19 Uchiyama M. Kobayashi Y. Furuyama T. Nakamura S. Kajihara Y. Miyoshi T. Sakamoto T. Kondo Y. Morokuma K. J. Am. Chem. Soc. 2008; 130: 472
- 20 Wardrop DJ. Burge MS. Chem. Commun. 2004; 1230
- 21 tert-Butyl 9,10-Diphenyl-2-anthracenecarboxylate (4e) A 10 mL test tube equipped with a magnetic stirring bar and a cap was charged with tert-butyl 9,10-diphenyl-9,10-epoxy-2-anthracenecarboxylate (3e, 100 mg, 224 μmol), wet CH2Cl2 (448 μL), Et3SiH (53.7 μL, 336 μmol), and TFA (20.0 μL, 269 μmol). The mixture was stirred for 23 h, after which time TLC (hexanes–EtOAc = 3:1) indicated complete consumption of tert-butyl 9,10-diphenyl-9,10-epoxy-2-anthracenecarboxylate (3e). The reaction was quenched by addition of H2O, and the aqueous layer was extracted with CH2Cl2 three times. The combined organic extracts were successively washed with sat. aq NaHCO 3 and brine, dried over anhydrous Na 2 SO 4 , and filtered. The organic solvents were removed under reduced pressure to give a crude anthracene, which was purified by flash column chromatography on silica gel (hexanes–CH2Cl2 = 4:1) to afford 4e (85.3 mg, 198 μmol, 88%) as a pale yellow solid. Rf = 0.73 (hexanes–EtOAc = 3:1). For the spectral data of 4e, see the Supporting Information.
- 22 In the case of LiTMP was used as the base, the yield (14%) was lower than using Mg(TMP)2·2LiCl as the base.
- 23 Athans AJ. Briggs JB. Jia W. Miller GP. J. Mater. Chem. 2007; 17: 2636
- 24 Kaur I. Jia W. Kopreski RP. Selvarasah S. Dokmeci MR. Pramanik C. McGruer NE. Miller GP. J. Am. Chem. Soc. 2008; 130: 16274
For a construction of the pyrroloquinoline skeleton using the benzyne-mediated strategy, see: