Synlett 2018; 29(03): 336-339
DOI: 10.1055/s-0036-1591492
letter
© Georg Thieme Verlag Stuttgart · New York

Sodium Iodide Mediated Oxysulfenylation of Olefins with Thiosulfates: A Strategy for Constructing Sulfenylated 2,3-Dihydrobenzofurans and β-Acetoxy Sulfides

Rongxing Zhang
College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. of China   Email: senlin@ncu.edu.cn   Email: yanzh@ncu.edu.cn
,
Zhaohua Yan*
College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. of China   Email: senlin@ncu.edu.cn   Email: yanzh@ncu.edu.cn
,
Sen Lin*
College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. of China   Email: senlin@ncu.edu.cn   Email: yanzh@ncu.edu.cn
› Author Affiliations
We are grateful for financial support from the National Natural Science Foundation of China (21302084).
Further Information

Publication History

Received: 26 July 2017

Accepted after revision: 18 September 2017

Publication Date:
20 October 2017 (online)


Abstract

A strategy has been developed for constructing sulfenylated 2,3-dihydrobenzofurans and β-acetoxy sulfides through NaI/DMSO-­mediated oxysulfenylation of alkenes with environmentally friendly thiosulfates. The reactions involve simple operations and give a series of sulfenylated 2,3-dihydrobenzofurans or β-acetoxy sulfides in moderate to good yields.

Supporting Information

 
  • References and Notes

    • 1a Beletskaya IP. Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 1b Kennemur JL. Kortman GD. Hull KL. J. Am. Chem. Soc. 2016; 138: 11914
    • 1c Song S. Zhang Y. Yeerlan A. Zhu B. Liu J. Jiao N. Angew. Chem. 2017; 129: 2527
    • 2a Beno BR. Yeung K.-S. Bartberger MD. Pennington LD. Meanwell NA. J. Med. Chem. 2015; 58: 4383
    • 2b Jackson DA. Widen JC. Harki DA. Brummond KM. J. Med. Chem. 2017; 60: 839
    • 2c Liu Y. Xie Z. Zhao D. Zhu J. Mao F. Tang S. Xu H. Luo C. Geng M. Huang M. Li J. J. Med. Chem. 2017; 60: 2227
    • 3a You N.-H. Chueh C.-C. Liu C.-L. Ueda M. Chen W.-C. Macromolecules 2009; 42: 4456
    • 3b Arslan M. Kiskan B. Yagci Y. Macromolecules 2016; 49: 767
    • 3c Oleske KW. Barteau KP. Turker MZ. Beaucage PA. Estroff LA. Wiesner U. Macromolecules 2017; 50: 542
    • 4a Meng D. Chen W. Zhao W. J. Nat. Prod. 2007; 70: 824
    • 4b Suhas R. Chandrashekar S. Gowda DC. Eur. J. Med. Chem. 2012; 48: 179
    • 4c Nakabayashi R. Yang ZG. Nishizawa T. Mori T. Saito K. J. Nat. Prod. 2015; 78: 1179
    • 5a Mao R.-Z. Cao F. Xiong D.-C. Li Q. Duan J. Ye X.-S. Org. Lett. 2015; 17: 5606
    • 5b Rountree JS. Murphy PV. Org. Lett. 2009; 11: 871
    • 5c Chaudhury A. Ghosh R. Org. Biomol. Chem. 2017; 15: 1444
    • 6a Haraguchi K. Matsui H. Takami S. Tanaka H. J. Org. Chem. 2009; 74: 2616
    • 6b Kojima T. Furukawa K. Maruyama H. Inoue N. Tarashima N. Matsuda A. Minakawa N. ACS Synth. Biol. 2013; 2: 529
    • 6c Sun Z.-H. Wang B. J. Org. Chem. 2008; 73: 2462
    • 7a Yang F.-L. Wang F.-X. Wang T.-T. Wang Y.-J. Tian S.-K. Chem. Commun. 2014; 50: 2111
    • 7b Vieira AA. Azeredo JB. Gocto M. Santi C. da Silver EF. Jr. Braga AL. J. Org. Chem. 2015; 80: 2120
    • 7c Gao Y. Gao Y. Tang X. Deng P. Hu M. Wu W. Jiang H. Org. Lett. 2016; 18: 1158
    • 7d Wang D. Zhang R. Ning W. Yan Z. Lin S. Org. Biomol. Chem. 2016; 14: 5136
    • 7e Wang D. Yan Z. Xie Q. Zhang R. Lin S. Wang Y. Org. Biomol. Chem. 2017; 15: 1998
    • 7f Gao X. Pan X. Gao J. Jiang H. Yuan G. Li Y. Org. Lett. 2015; 17: 1038
    • 7g Wang L. Chen M. Qi L. Xu Z. Li W. Chem. Commun. 2017; 53: 2056
    • 7h Denmark SE. Kornfilt DJ. P. J. Org. Chem. 2017; 82: 3192
    • 8a Bunte H. Ber. Dtsch. Chem. Ges. 1874; 7: 646
    • 8b Distler H. Angew. Chem. Int. Ed. Engl. 1967; 6: 544
    • 8c Reeves JT. Camara K. Han ZS. Xu Y. Lee H. Busacca CA. Senanayake CH. Org. Lett. 2014; 16: 1196
  • 9 Qiao Z. Jiang X. Org. Biomol. Chem. 2017; 15: 1942
  • 10 Qiao Z. Jiang X. Org. Lett. 2016; 18: 1550
    • 11a Qi H. Zhang T. Wan K. Luo M. J. Org. Chem. 2016; 81: 4262
    • 11b Li J. Cai ZJ. Wang SY. Ji SJ. Org. Biomol. Chem. 2016; 14: 9384
    • 11c Zhang R. Yan Z. Wang D. Wang Y. Lin S. Synlett 2017; 28: 1195
    • 12a Abbasi M. Mohammadizadeh MR. Saeedi N. New J. Chem. 2016; 40: 89
    • 12b Cui H. Liu X. Wei W. Yang D. He C. Zhang T. Wang H. J. Org. Chem. 2016; 81: 2252
  • 13 2,3-Dihydro-1-benzofurans 3; General Procedure NaI (0.06 mmol) and the appropriate thiosulfate 2 (0.36 mmol) were added to a solution of 2-allylphenol (1a; 0.30 mmol) in MeCN (1 mL). DMSO (0.60 mmol) was then added and the mixture was stirred in a sealed tube at 100 °C for 3 h. When the reaction was complete, the mixture was diluted with EtOAc (3 × 5 mL) and the reaction was quenched with sat. aq Na2SO3. The mixture was extracted with EtOAc (3 × 10 mL), and the organic layers were combined, washed with H2O (10 mL), dried (Na2SO4), and concentrated in vacuo. The residue was purified by column chromatography (silica gel, PE). 2-[(Benzylthio)methyl]-2,3-dihydro-1-benzofuran (3a) Yellow oil; yield: 76.9 mg (91%). 1H NMR (400 MHz, CDCl3): δ = 7.34–7.25 (m, 5 H), 7.17–7.10 (m, 2 H), 6.87–6.79(m, 2 H), 4.92–4.85 (m, 1 H), 3.82 (s, 2 H), 3.33–3.27 (dd, J = 8, 16 Hz, 1 H), 3.05–2.99 (dd, J = 8, 16 Hz, 1 H), 2.84–2.79 (dd, J = 6, 14 Hz, 1 H), 2.72–2.67 (dd, J = 6, 14 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 159.15, 138.17, 129.00, 128.57, 128.06, 127.13, 126.28, 124.99, 120.54, 109.41, 82.19, 36.81, 36.09, 34.97. HRMS (ESI): m/z [M + Na]+ Calcd for C16H16NaOS: 279.0814; found: 279.0794.