Synthesis 2018; 50(04): 831-845
DOI: 10.1055/s-0036-1591082
paper
© Georg Thieme Verlag Stuttgart · New York

Glycosyl Aldehydes: New Scaffolds for the Synthesis of Neoglycoconjugates via Bioorthogonal Oxime Bond Formation

José J. Reina
,
Alicia Rioboo
,
This work was partially supported by the Spanish Agencia Estatal de Investigación (AEI) [CTQ2014–59646-R], the Xunta de Galicia (ED431G/09, ED431C 2017/25 and 2016-AD031) and the ERDF. J.M. received a Ramón y Cajal (RYC-2013–13784), an ERC-Stg (DYNAP- 677786) and a Young Investigator Grant from the Human Frontier Science Research Program (RGY0066/2017).
Further Information

Publication History

Received: 19 October 2017

Accepted after revision: 05 December 2017

Publication Date:
02 January 2018 (eFirst)

Published as part of the Bürgenstock Special Section 2017 Future Stars in Organic Chemistry

Abstract

The straightforward preparation of glycosyl neoconjugates by oxime (or hydrazone) bond formation represents a key bioorthogonal tool in chemical biology. However, when this strategy is employed by reacting the reducing end of the glycan moiety, the configuration and the stereochemical information is lost due to partial (or complete) opening of the glycan cyclic hemiacetal and the formation of the corresponding opened tautomers. We have completed the synthesis of a library of glycosyl aldehydes to be used as scaffold for the synthesis of neoglycoconjugates via oxime bond formation. These glycosyl aldehydes constitute a simple and accessible alternative to avoid loss of chiral information when conjugating, by oxime (or hydrazone) bonds, the aldehyde functionality present at the reducing end of natural carbohydrates.

Supporting Information

 
  • References

    • 1a Varki A. Cummings R. Esko J. Freeze H. Hart G. Marth J. Essentials of Glycobiology . 2nd ed. Cold Spring Harbor Laboratory Press; New York: 2009
    • 1b Wittman V. In Glycoscience . Fraser-Reid B. Tatsuta K. Thiem J. Springer-Verlag; Berlin: 2008: 135
    • 1c Varki A. Glycobiology 2017; 27: 3
    • 2a Roy R. Drug Discovery Today: Technol. 2004; 1: 327
    • 2b Fernández-Tejada A. Cañada FJ. Jiménez-Barbero J. ChemMedChem 2015; 10: 1291
    • 3a Bertozzi CR. Kiessling LL. Science 2001; 291: 2357
    • 3b Raman R. Raguram S. Venkataraman G. Paulson JC. Sasisekharan R. Nat. Methods 2005; 2: 817
    • 3c Timmer MS. Stocker BL. Seeberger PH. Curr. Opin. Chem. Biol. 2007; 11: 59
    • 3d Cunningham S. Gerlach JQ. Kane M. Joshi L. Analyst 2010; 135: 2471
  • 4 Villadsen K. Martos-Maldonado MC. Jensen KJ. Thygesen MB. ChemBioChem 2017; 18: 574
  • 5 Larsen K. Thygesen MB. Guillaumie F. Willats WG. T. Jensen KJ. Carbohydr. Res. 2006; 341: 1209
  • 6 Godula K. Bertozzi CR. J. Am. Chem. Soc. 2012; 134: 15732
    • 7a Sletten EM. Bertozzi CR. Angew. Chem. Int. Ed. 2009; 48: 6974
    • 7b Prescher JA. Dube DH. Bertozzi CR. Nature 2004; 430: 873
    • 7c Prescher JA. Bertozzi CR. Nat. Chem. Biol. 2005; 1: 13
  • 8 Baskin JM. Prescher JA. Laughlin ST. Agard NJ. Chang PV. Miller IA. Lo A. Codelli JA. Bertozzi CR. Proc. Natl. Acad. Sci. U.S.A. 2007; 104: 16793
  • 9 Ning X. Temming RP. Dommerholt J. Guo J. Blanco-Ania D. Debets MF. Wolfert MA. Boons G.-J. Van Delft FL. Angew. Chem. Int. Ed. 2010; 49: 3065
  • 10 Yarema KJ. Mahal LK. Bruehl RE. Rodriguez EC. Bertozzi CR. J. Biol. Chem. 1998; 273: 31168
    • 11a Blackman ML. Royzen M. Fox JM. J. Am. Chem. Soc. 2008; 130: 13518
    • 11b Ehret F. Wu H. Alexander SC. Devaraj NK. J. Am. Chem. Soc. 2015; 137: 8876
    • 11c Šečkutė J. Devaraj NK. Curr. Opin. Chem. Biol. 2013; 17: 761
  • 12 Stöckmann H. Neves AA. Stairs S. Brindle KM. Leeper FJ. Org. Biomol. Chem. 2011; 9: 7303
  • 13 Sletten EM. Bertozzi CR. J. Am. Chem. Soc. 2011; 133: 17570
    • 14a Zhao Y. Kent SB. Chait BT. Proc. Natl. Acad. Sci. U.S.A. 1997; 94: 162
    • 14b Gehin C. Montenegro J. Bang E.-K. Cajaraville A. Takayama S. Hirose H. Futaki S. Matile S. Riezman H. J. Am. Chem. Soc. 2013; 135: 9295
    • 14c Priegue JM. Crisan DN. Martínez-Costas J. Granja JR. Fernandez-Trillo F. Montenegro J. Angew. Chem. Int. Ed. 2016; 55: 7492
    • 14d Crisan DN. Creese O. Ball R. Brioso JL. Martyn B. Montenegro J. Fernandez-Trillo F. Polym. Chem. 2017; 8: 4576
    • 14e Pazo M. Fernández-Caro H. Priegue JM. Lostalé-Seijo I. Montenegro J. Synlett 2017; 28: 924
    • 14f Louzao I. García-Fandiño R. Montenegro J. J. Mater. Chem. B 2017; 5: 4426
    • 14g Fuertes A. Marisa J. Granja JR. Montenegro J. Chem. Commun. 2017; 7861
  • 15 Cervigny E. Dumy P. Mutter M. Angew. Chem., Int. Ed. Engl. 1996; 35: 1230
  • 16 Forget D. Boturyn D. Defrancq E. Lhomme J. Dumy P. Chem. Eur. J. 2001; 7: 3976
  • 18 Banoub J. Boullanger P. Lafont D. Chem. Rev. 1992; 92: 1167
  • 19 Wipf P. Eyer BR. Yamaguchi Y. Zhang F. Neal MD. Sodhi CP. Good M. Branca M. Prindle TJr. Lu P. Brodsky JL. Hackam DJ. Tetrahedron Lett. 2015; 56: 3097
    • 20a Zurabyan SE. Bílik V. Bauer S. Chem. Zvesti 1969; 23: 923
    • 20b Piekarska B. Rocz. Chem. 1975; 49: 1919
    • 20c Cheetham NW. H. Sirimanne P. Carbohydr. Res. 1981; 96: 126
  • 21 Khamsi J. Ashmus RA. Schocker NS. Michael K. Carbohydr. Res. 2012; 357: 147
    • 22a Reina JJ. Di Maio A. Ramos-Soriano J. Figueiredo RC. Rojo J. Org. Biomol. Chem. 2016; 14: 2873
    • 22b Ramos-Soriano J. de la Fuente MC. de la Cruz N. Figueiredo RC. Rojo J. Reina JJ. Org. Biomol. Chem. 2017; 15: 8877
  • 23 Reina JJ. Rojo J. Tetrahedron Lett. 2006; 47: 2475
  • 24 Chang S.-M. Tu Z. Jan H.-M. Pan J.-F. Lin C.-H. Chem. Commun. 2013; 4265
  • 25 Eichler E. Kihlberg J. Bundle DR. Glycoconjugate J. 1991; 8: 69
  • 26 Fang TT. Zirrolli J. Bendiak B. Carbohydr. Res. 2007; 342: 217
  • 27 Villadsen K. Martos-Maldonado MC. Jensen KJ. Thygensen MB. ChemBioChem 2017; 18: 574