Synlett 2018; 29(06): 805-809
DOI: 10.1055/s-0036-1591022
letter
© Georg Thieme Verlag Stuttgart · New York

Scalable Synthesis of Amaryllidaceae Isocarbostyril Alkaloids from Enantiomerically Pure 7-Azabicyclo[2.2.1]heptanone Scaffold: Total Synthesis of (+)-7-Deoxypancratistatin

Ganesh Pandey*
Molecular Synthesis Laboratory, Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014 (U.P.), India   Email: gp.pandey@cbmr.res.in
,
Rushil Fernandes
Molecular Synthesis Laboratory, Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014 (U.P.), India   Email: gp.pandey@cbmr.res.in
,
Debasis Dey
Molecular Synthesis Laboratory, Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014 (U.P.), India   Email: gp.pandey@cbmr.res.in
› Author Affiliations
We thank the Department of Science & Technology (DST), New Delhi through the J.C. Bose Fellowship for generous financial support. D.D. and R.F. thank the Council of Scientific and Industrial Research (CSIR) and the University Grants Commission (UGC), respectively, for their fellowships.
Further Information

Publication History

Received: 10 October 2017

Accepted after revision: 10 December 2017

Publication Date:
15 January 2018 (online)


Abstract

A conceptually new and scalable strategy (ten linear steps, 13.9% overall yield) has been developed to synthesize (+)-7-deoxy­pancratistatin from optically pure 7-azabicyclo[2.2.1]heptanone scaffold. The crucial trans-B–C ring junction was fixed at an early stage of the synthesis by exploiting the rigid bicyclic structural framework of the starting precursor. Stereoselective installation of hydroxyl groups around the perimeter of the cyclohexenyl C-ring involved sequential epoxidation–phenylselenylation–oxydeselenylation sequence followed by dihydroxylation. The most attractive feature of this synthesis is the use of a protection–deprotection step only at the penultimate step making the protocol very efficient and atom economical.

Supporting Information

 
  • References and Notes

    • 1a Pettit GR. Gaddamidi V. Cragg GM. J. Nat. Prod. 1984; 47: 1018
    • 1b Pettit GR. Gaddamidi V. Cragg GM. Herald DL. Sagawa Y. J. Chem. Soc., Chem. Commun. 1984; 1693
    • 1c Pettit GR. Gaddamidi V. Herald DL. Singh SB. Cragg GM. Schmidt JM. Boettner FE. Williams M. Sagawa Y. J. Nat. Prod. 1986; 49: 995
  • 2 Pettit GR. Backhaus RA. Boyd MR. Meerow AW. J. Nat. Prod. 1993; 56: 1682
  • 3 Kornienko A. Evidente A. Chem. Rev. 2008; 108: 1982
    • 4a Kekre N. Griffin C. McNulty J. Pandey S. Cancer Chemother. Pharmacol. 2005; 56: 29
    • 4b Griffin C. McNulty J. Pandey S. Int. J. Oncol. 2011; 38: 1549
    • 5a Pettit GR. Melody N. J. Nat. Prod. 2005; 68: 207
    • 5b Pettit GR. Eastham SA. Melody N. Orr B. Herald DL. McGregor J. Knight JC. Doubek DL. Pettit GR. III. Garner LC. Bell JA. J. Nat. Prod. 2006; 69: 7
  • 6 Ghosal S. Singh S. Kumar Y. Srivastava RS. Phytochemistry 1989; 28: 611
    • 7a Torres-Labandeira JJ. Davignon P. Pitha J. J. Pharm. Sci. 1991; 80: 384
    • 7b Chrétien F. Ahmed SI. Masion A. Chapleur Y. Tetrahedron 1993; 49: 7463
    • 7c Beijnen JH. Flora KP. Halbert GW. Henrar RE. Slack JA. Br. J. Cancer 1995; 72: 210
    • 7d Pettit GR. Freeman S. Simpson MJ. Thompson MA. Boyd MR. Williams MD. Pettit GR. III. Doubek DL. Anti-Cancer Drug Des. 1995; 10: 243
    • 7e Pettit GR. Orr B. Ducki S. Oncol. Res. 2000; 15: 389
    • 7f McNulty J. Mao J. Gibe R. Mo R. Wolf S. Pettit GR. Herald DL. Boyd MR. Bioorg. Med. Chem. Lett. 2001; 11: 169
    • 7g Hudlicky T. Rinner U. Gonzalez D. Akgun H. Schilling S. Siengalewicz P. Martinot TA. Pettit GR. J. Org. Chem. 2002; 67: 8726
    • 7h Pettit GR. Melody N. Herald DL. Schmidt JM. Pettit RK. Chapuis J.-C. Heterocycles 2002; 56: 139
    • 7i Pettit GR. Melody N. Simpson M. Thompson M. Herald DL. Knight JC. J. Nat. Prod. 2003; 66: 92
    • 7j Phung AN. Zannetti MT. Whited G. Fessner WD. Angew. Chem. Int. Ed. 2003; 42: 4821
    • 7k Phung AN. Zannetti MT. Whited G. Fessner WD. Angew. Chem. 2003; 115: 4970
    • 7l Ibn-Ahmed S. Khaldi M. Chretien F. Chapleur Y. J. Org. Chem. 2004; 69: 6722
    • 7m Pettit GR. Melody N. Herald DL. J. Nat. Prod. 2004; 67: 322
    • 7n Rinner U. Hillebrenner HL. Adams DR. Hudlicky T. Pettit GR. Bioorg. Med. Chem. Lett. 2004; 14: 2911
    • 7o Rinner U. Hudlicky T. Gordon H. Pettit GR. Angew. Chem. Int. Ed. 2004; 43: 5342
    • 7p Rinner U. Hudlicky T. Gordon H. Pettit GR. Angew. Chem. 2004; 116: 5456
    • 7q Hudlicky T. Rinner U. Finn KJ. Ghiviriga I. J. Org. Chem. 2005; 70: 3490
    • 7r McNulty J. Larichev V. Pandey S. Bioorg. Med. Chem. Lett. 2005; 15: 5315
    • 7s Pettit GR. Melody N. J. Nat. Prod. 2005; 68: 207
    • 7t Shnyder SD. Cooper PA. Millington NJ. Gill JH. Pettit GR. Bibby MC. Clin. Cancer Res. 2005; 11: 8971
    • 7u Hudlicky T. Moser M. Banfield SC. Rinner U. Chapuis J.-C. Pettit GR. Can. J. Chem. 2006; 84: 1313
    • 7v Kireev AS. Nadein ON. Agustin VJ. Bush NE. Evidente A. Manpadi M. Ogasawara MA. Rastogi SK. Rogelj S. Shors ST. Kornienko A. J. Org. Chem. 2006; 71: 5694
    • 7w McNulty J. Nair JJ. Griffin C. Pandey S. J. Nat. Prod. 2008; 71: 357
    • 7x Shnyder SD. Cooper PA. Millington NJ. Gill JH. Bibby MC. J. Nat. Prod. 2008; 71: 321
  • 8 McLachlan A. Kekre N. McNulty J. Pandey S. Apoptosis 2005; 10: 619
    • 9a Danishefsky S. Lee JY. J. Am. Chem. Soc. 1989; 111: 4829
    • 9b Kim S. Ko H. Kim E. Kim D. Org. Lett. 2002; 4: 1343
    • 9c Cho H.-K. Lim H.-Y. Cho C.-G. Org. Lett. 2013; 15: 5806
    • 9d Zhang H. Padwa A. Tetrahedron Lett. 2006; 47: 3905
    • 9e Padwa A. Zhang H. J. Org. Chem. 2007; 72: 2570
    • 9f Nieto-Garcia O. Lago-Santome H. Cagide-Fagin F. Ortiz-Lara JC. Alonso R. Org. Biomol. Chem. 2012; 10: 825
    • 10a Paulsen H. Stubbe M. Tetrahedron Lett. 1982; 23: 3171
    • 10b Paulsen H. Stubbe M. Liebigs Ann. Chem. 1983; 4: 535
    • 10c Keck GE. McHardy SF. J. A. Murry, J. Am. Chem. Soc. 1995; 117: 7289
    • 10d Tian X. Maurya R. Königsberger K. Hudlicky T. Synlett 1995; 1125
    • 10e Trost BM. Pulley SR. J. Am. Chem. Soc. 1995; 117: 10143
    • 10f Tian X. Hudlicky T. Konigsberger K. J. Am. Chem. Soc. 1995; 117: 3643
    • 10g Hudlicky T. Tian X. Königsberger K. Maurya R. Rouden J. Fan B. J. Am. Chem. Soc. 1996; 118: 10752
    • 10h Chida N. Jitsuoka M. Yamamoto Y. Ohtsuka M. Ogawa S. Heterocycles 1996; 43: 1385
    • 10i Doyle TJ. Hendrix M. VanDerveer D. Javanmard S. Haseltine J. Tetrahedron 1997; 53: 11153
    • 10j Keck GE. Wager TT. McHardy SF. J. Org. Chem. 1998; 63: 9164
    • 10k Magnus P. Sebhat IK. J. Am. Chem. Soc. 1998; 120: 5341
    • 10l Keck GE. McHardy SF. Murry JA. J. Org. Chem. 1999; 64: 4465
    • 10m Aceña JL. Arjona O. León ML. Plumet J. Org. Lett. 2000; 2: 3683
    • 10n Rigby JH. Maharoof US. M. Mateo ME. J. Am. Chem. Soc. 2000; 122: 6624
    • 10o Hakansson AE. Palmelund A. Holm H. Madsen R. Chem. Eur. J. 2006; 12: 3243
    • 10p Li M. Wu A. Zhou P. Tetra­hedron Lett. 2006; 47: 3707
    • 10q Dam JH. Madsen R. Eur. J. Org. Chem. 2009; 4666
    • 10r Collins J. Rinner U. Moser M. Hudlicky T. Ghiviriga I. Romero AE. Kornienko A. Ma D. Griffin C. Pandey S. J. Org. Chem. 2010; 75: 3069
    • 10s Cagide-Fagin F. Nieto-Garcia O. Lago-Santome H. Alonso R. J. Org. Chem. 2012; 77: 11377
    • 10t Hernandez LW. Pospech J. Klockner U. Bingham TW. Sarlah D. J. Am. Chem. Soc. 2017; 139: 15656
    • 10u Potter TJ. Ellman JA. Org. Lett. 2017; 19: 2985
    • 11a Pandey G. Tiwari KN. Puranik VG. Org. Lett. 2008; 10: 3611
    • 11b Pandey G. Rajender S. Chem. Eur. J. 2011; 17: 6304
    • 11c Pandey G. Dey D. Fernandes R. Eur. J. Org. Chem. 2013; 4319
  • 12 Movassaghi M. Hill MD. Org. Lett. 2008; 10: 3485
    • 13a Chen Z. Trudell ML. Chem. Rev. 1996; 96: 1179
    • 13b Pandey G. Tiwari SK. Singh RS. Mali RS. Tetrahedron Lett. 2001; 42: 3947
  • 14 tert-Butyl [(1S, 2R)-2-(benzo[d][1,3]dioxol-5-yl)cyclohex-3-en-1-yl]carbamate (6) Sodium naphthalenide (Na-Nap) was prepared by taking naphthalene (706 mg, 5.51 mmol, 3 equiv) in dry, degassed THF (40 mL) and adding freshly cut sodium (633 mg, 27.5 mmol, 15 equiv) and stirring at r.t. for 3 h. The dark green Na-Nap solution was then transferred via syringe to a dry, argon-filled round-bottom flask and cooled while stirring to –78 °C. A solution of 9 (840 mg, 1.84 mmol, 1.0 equiv) in 20 mL dry THF (freshly distilled from benzophenone ketyl) was added dropwise into the cooled Na-Nap solution. After addition was complete, the reaction was quenched by adding sat. aq NH4Cl solution and warmed to r.t.. The two layers were separated, and the aqueous layer was diluted with water and extracted with EtOAc (3 × 20 mL). The combined organic layer was dried with anhydrous Na2SO4 and concentrated in vacuo. The residue was purified by flash column chromatography (hexane/ EtOAc, 9:1) to yield 6 (512 mg, 88%) as a crystalline white solid. mp 124–128 °C; [α]D 24.7 + 106.5 (c 0.51 in MeOH). IR (KBr): 3356, 2929, 1685, 1529, 1247, 1173, 1042 cm–1. 1H NMR (800 MHz, CDCl3): δ = 6.79–6.69 (m, 3 H), 5.95–5.87 (m, 3 H), 5.62 (d, J = 8.53 Hz, 1 H), 4.64 (br s, 1 H), 3.70 (br s, 1 H), 3.23 (br s, 1 H), 2.26–2.20 (m, 1 H), 2.19–2.12 (m, 1 H), 1.93–1.87 (m, 1 H), 1.62–1.56 (m, 1 H), 1.40 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 155.2, 147.5, 146.1, 136.7, 128.2, 127.8, 121.5, 108.7, 107.9, 100.7, 79.0, 52.4, 47.8, 28.3, 25.7, 23.1. HRMS (ESI): m/z calcd for [C18H23NO4 + Na+]: 340.1519; found: 340.1519.
  • 15 tert-Butyl [(1S, 2R, 3S, 6R)-2-(benzo[d][1,3]dioxol-5-yl)-7-oxa­bicyclo[4.1.0]heptan-3-yl]carbamate (10) To a stirred solution of 6 (500 mg, 1.58 mmol, 1.0 equiv) in CH2Cl2 at r.t. was added m-CPBA (882 mg, 3.94 mmol, 2.5 equiv). After stirring for 1 h at that temperature, the reaction mixture was cooled in an ice bath and quenched by the addition of sat. aq NaHCO3, and stirring vigorously until the pink color completely disappeared. This was diluted with CH2Cl2, washed with brine, dried over Na2SO4, and concentrated. The residue was purified by flash column chromatography (hexane/ EtOAc, 5:1) to obtain major isomer 10 (394 mg, 75%) as a white solid. mp 165–169 °C. [α]D 24.5 + 54.2 (c 0.24 in MeOH). IR (CHCl3): 2545, 1686, 1578, 1415 cm–1. 1H NMR (800 MHz,CDCl3): δ = 6.79 (d, J = 8.03 Hz, 1 H), 6.76 (s, 1 H), 6.74 (d, J = 7.53 Hz, 1 H), 5.96 (dd, J = 1.4, 6.52 Hz, 2 H), 4.72 (br s, 1 H), 3.56 (br s, 1 H), 3.33 (br s, 1 H), 3.19 (br s, 1 H), 2.98–2.89 (m, 1 H), 2.23 (d, J = 15.06 Hz, 1 H), 2.07–2.00 (m, 1 H), 1.71–1.65 (m, 1 H), 1.48–1.40 (m, 1 H), 1.36 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 155.0, 147.8, 146.5, 134.5, 121.4, 108.6, 108.3, 101.0, 79.2, 56.1, 52.4, 51.5, 47.2, 29.7, 28.3, 22.7. HRMS (ESI): m/z calcd for [C18H23NO5 + Na+]: 356.1468; found: 356.1470.
  • 16 Dess DB. Martin JC. J. Org. Chem. 1983; 48: 4155
    • 17a Nakata T. Tanaka T. Oishi T. Tetrahedron Lett. 1981; 22: 4723
    • 17b Banfi S. Colonna S. Molinari H. Julia S. Synth. Comm. 1983; 13: 901
    • 17c Li K. Hamann LG. Koreeda M. Tetra­hedron Lett. 1992; 33: 6569