Synthesis 2018; 50(01): 119-126
DOI: 10.1055/s-0036-1590892
paper
© Georg Thieme Verlag Stuttgart · New York

Decarbonylation of Aromatic Aldehydes and Dehalogenation of Aryl Halides Using Maghemite-Supported Palladium Catalyst

Vladimir Ajdačić
a   Faculty of Chemistry, University of Belgrade, PO Box 51, Studentski trg 16, 11158 Belgrade, Serbia
,
Andrea Nikolić
a   Faculty of Chemistry, University of Belgrade, PO Box 51, Studentski trg 16, 11158 Belgrade, Serbia
,
Stefan Simić
a   Faculty of Chemistry, University of Belgrade, PO Box 51, Studentski trg 16, 11158 Belgrade, Serbia
,
Dragan Manojlović
a   Faculty of Chemistry, University of Belgrade, PO Box 51, Studentski trg 16, 11158 Belgrade, Serbia
,
Zoran Stojanović
b   Institute of Technical Sciences, Serbian Academy of Arts and Sciences, Knez Mihajlova 35/IV, 11000 Belgrade, Serbia
,
Jasmina Nikodinovic-Runic
c   Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia   Email: igorop@chem.bg.ac.rs
,
a   Faculty of Chemistry, University of Belgrade, PO Box 51, Studentski trg 16, 11158 Belgrade, Serbia
› Author Affiliations
This research was financially supported by the Ministry of Education, Science and Technological Development of Serbia (Grant No. 172008 and III45004).
Further Information

Publication History

Received: 11 July 2017

Accepted after revision: 02 August 2017

Publication Date:
06 September 2017 (online)


Abstract

A facile decarbonylation reaction of a variety of aromatic and heteroaromatic aldehydes using maghemite-supported palladium catalyst has been developed. The magnetic properties of catalyst facilitated an easy and efficient recovery of the catalyst from the reaction mixture using an external magnet. It was found that the catalyst could be reused up to four consecutive catalytic runs without a significant change in activity. In addition, the catalyst was also very effective in the dehalogenation of aryl halides. This is the first report on efficient utilization of directly immobilized Pd on maghemite in decarbonylation and dehalogenation reactions.

Supporting Information

 
  • References

  • 1 Ortiz de Montellano PR. In Cytochrome P450: Structure, Mechanism, and Biochemistry . 4th ed.; Ortiz de Montellano PR. Springer; Berlin: 2015: 154
  • 2 Modak A. Maiti D. Org. Biomol. Chem. 2016; 14: 21
    • 3a Tsuji J. Ohno K. Tetrahedron Lett. 1965; 3969
    • 3b Ohno K. Tsuji J. J. Am. Chem. Soc. 1968; 90: 99
    • 3c Tsuji J. Ohno K. Synthesis 1969; 157
    • 3d Walborsky HM. Allen LE. J. Am. Chem. Soc. 1971; 93: 5465
    • 3e Ziegler FE. Belema M. J. Org. Chem. 1997; 62: 1083
    • 3f Zeng C.-M. Han M. Covey DF. J. Org. Chem. 2000; 65: 2264
    • 3g Kato T. Hoshikawa M. Yaguchi Y. Izumi K. Uotsu Y. Sakai K. Tetrahedron 2002; 58: 9213
    • 3h Harmata M. Wacharasindhu S. Org. Lett. 2005; 7: 2563
    • 3i Malerich JP. Maimone TJ. Elliott GI. Trauner D. J. Am. Chem. Soc. 2005; 127: 6276
    • 3j Zhang H. Padwa A. Tetrahedron Lett. 2006; 47: 3905
    • 3k Padwa A. Zhang H. J. Org. Chem. 2007; 72: 2570
    • 4a Doughty DH. Pignolet LH. J. Am. Chem. Soc. 1978; 100: 7083
    • 4b Boeckman RK. Jr. Zhang J. Reeder MR. Org. Lett. 2002; 4: 3891
    • 4c Fristrup P. Kreis M. Palmelund A. Norrby PO. Madsen R. J. Am. Chem. Soc. 2008; 130: 5206
    • 4d Patra T. Manna S. Maiti D. Angew. Chem. Int. Ed. 2011; 50: 12140
    • 5a Hawthorne JO. Wilt MH. J. Org. Chem. 1960; 25: 2215
    • 5b Tsuji J. Ohno K. Kajimoto T. Tetrahedron Lett. 1965; 4565
    • 5c Tsuji J. Ohno K. J. Am. Chem. Soc. 1968; 90: 94
    • 5d Wilt JW. Pawlikowski WW. J. Org. Chem. 1975; 40: 3641
    • 5e Matsubara S. Yokota Y. Oshima K. Org. Lett. 2004; 6: 2071
    • 5f Modak A. Deb A. Patra T. Rana S. Maity S. Maiti D. Chem. Commun. 2012; 48: 4253
    • 5g Modak A. Naveen T. Maiti D. Chem. Commun. 2013; 49: 252
    • 5h Modak A. Rana S. Phukan AK. Maiti D. Eur. J. Org. Chem. 2017; DOI: in press; 10.1002/ejoc.201700451.
    • 6a Shibata T. Toshida N. Yamasaki M. Maekawa S. Takagi K. Tetrahedron 2005; 61: 9974
    • 6b Kwong FY. Lee HW. Lam WH. Qiu L. Chan AS. C. Tetrahedron: Asymmetry 2006; 17: 1238
    • 6c Iwai T. Fujihara T. Tsuji Y. Chem. Commun. 2008; 6215
  • 7 Ding K. Xu S. Alotaibi R. Paudel K. Reinheimer EW. Weatherly J. J. Org. Chem. 2017; 82: 4924
    • 8a Domazetis G. Tarpey B. Dolphin D. James BR. J. Chem. Soc., Chem. Commun. 1980; 939
    • 8b Park KH. Son SU. Chung YK. Chem. Commun. 2003; 1898
    • 9a Huang Y.-B. Yang Z. Chen M.-Y. Dai J.-J. Guo Q.-X. Fu Y. ChemSusChem 2013; 6: 1348
    • 9b Kundu PK. Dhiman M. Modak A. Chowdhury A. Polshettiwar V. Maiti D. ChemPlusChem 2016; 81: 1142
    • 9c Ishida T. Kume K. Kinjo K. Honma T. Nakada K. Ohashi H. Yokoyama T. Hamasaki A. Murayama H. Izawa Y. Utsunomiya M. Tokunaga M. ChemSusChem 2016; 9: 3441
    • 10a Polshettiwar V. Luque R. Fihri A. Zhu H. Bouhrara M. Basset J.-M. Chem. Rev. 2011; 111: 3036
    • 10b Zeltner M. Schätz A. Hefti ML. Stark WJ. J. Mater. Chem. 2011; 21: 2991
    • 10c Wang D. Astruc D. Chem. Rev. 2014; 114: 6949
    • 10d Rossi LM. Costa NJ. S. Silva FP. Wojcieszak R. Green Chem. 2014; 16: 2906
    • 10e Hudson R. Feng Y. Varma RS. Moores A. Green Chem. 2014; 16: 4493
    • 10f Kainz QM. Linhardt R. Grass RN. Vilé G. Pérez-Ramírez J. Stark WJ. Reiser O. Adv. Funct. Mater. 2014; 24: 2020
    • 10g Wu L. Mendoza-Garcia A. Li Q. Sun S. Chem. Rev. 2016; 116: 10473
    • 10h Wang D. Astruc D. Chem. Soc. Rev. 2017; 46: 816
    • 10i Kothandapani J. Ganesan A. Ganesan SS. Synthesis 2017; 49: 685
  • 11 Pélisson C.-H. Denicourt-Nowicki A. Meriadec C. Greneche J.-M. Roucoux A. ChemCatChem 2015; 7: 309
    • 12a Ebrahimi A. Heydari A. Esrafili A. Catal. Lett. 2014; 144: 2204
    • 12b Sharma RK. Gaur R. Yadav M. Rathi AK. Pechousek J. Petr M. Zboril R. Gawande MB. ChemCatChem 2015; 7: 3495
  • 13 Pélisson C.-H. Denicourt-Nowicki A. Roucoux A. ACS Sustainable Chem. Eng. 2016; 4: 1834
  • 14 Gade VB. Rathi AK. Bhalekar SB. Tucek J. Tomanec O. Varma RS. Zboril R. Shelke SN. Gawande MB. ACS Sustainable Chem. Eng. 2017; 5: 3314
  • 15 Gawande MB. Rathi AK. Tucek J. Safarova K. Bundaleski N. Teodoro OM. N. D. Kvitek L. Varma RS. Zboril R. Green Chem. 2014; 16: 4137
  • 16 Rathi AK. Gawande MB. Pechousek J. Tucek J. Aparicio A. Petr M. Tomanec O. Krikavova R. Travnicek Z. Varma RS. Zboril R. Green Chem. 2016; 18: 2363
  • 17 Akanksha Maiti D. Green Chem. 2012; 14: 2314
  • 18 Hara T. Kaneta T. Mori K. Mitsudome T. Mizugaki T. Ebitani K. Kaneda K. Green Chem. 2007; 9: 1246
  • 19 Opsenica IM. Verbić T. Ž. Tot M. Sciotti RJ. Pybus BS. Djurković-Djaković O. Slavić K. Šolaja BA. Bioorg. Med. Chem. 2015; 23: 2176
  • 20 Ajdačić V. Stepanović S. Zlatović M. Gruden M. Opsenica IM. Synthesis 2016; 48: 4423
  • 21 Wu X. Zhang F.-Y. Zhu J. Song C. Xiong D.-C. Zhou Y. Cui Y. Ye X.-S. Chem. Asian J. 2014; 9: 2260
  • 22 Zhang G. Synthesis 2005; 537
  • 23 Cheng Y. Gu X. Li P. Org. Lett. 2013; 15: 2664
  • 24 Dunsford JJ. Clark ER. Ingleson MJ. Angew. Chem. Int. Ed. 2015; 54: 5688
  • 25 Fyfe JW. B. Fazakerley NJ. Watson AJ. B. Angew. Chem. Int. Ed. 2017; 56: 1249
  • 26 Rao ML. N. Banerjee D. Dhanorkar DR. Synlett 2011; 1324