Synlett 2017; 28(15): 1867-1872
DOI: 10.1055/s-0036-1590842
synpacts
© Georg Thieme Verlag Stuttgart · New York

Recent Progress on the Synthesis of (Aza)indoles through Oxidative Alkyne Annulation Reactions

Zhong-Wei Hou, Zhong-Yi Mao, Hai-Chao Xu*
  • iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. of China   Email: haichao.xu@xmu.edu.cn
Financial support of this research from the National Natural Science Foundation of China (No.s, 21672178, 21402164), the Ministry of Science and Technology of the People’s Republic of China (No. 2016YFA0204100), and the “Thousand Youth Talents Plan” is gratefully acknowledged.
Further Information

Publication History

Received: 09 June 2017

Accepted after revision: 21 June 2017

Publication Date:
20 July 2017 (eFirst)

Abstract

The oxidative [3+2] cycloaddition of alkynes with arylamines is a powerful method for the synthesis of (aza)indoles because it employs unfunctionalized and easily available materials. Herein, recent progress in the synthesis of (aza)indoles through transition metal-catalyzed oxidative [3+2] cycloaddition is highlighted.

1 Introduction

2 Second-Row Transition-Metal Catalysts

3 First-Row Transition-Metal Catalysts

4 Summary

 
  • References

    • 1a Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489
    • 1b Alves FR. D. Barreiro EJ. Fraga CA. M. Mini-Rev. Med. Chem. 2009; 9: 782
    • 2a Cacchi S. Fabrizi G. Chem. Rev. 2005; 105: 2873
    • 2b Humphrey GR. Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 2c Inman M. Moody CJ. Chem. Sci. 2013; 4: 29
    • 2d Guo TL. Huang F. Yu LK. Yu ZK. Tetrahedron Lett. 2015; 56: 296
  • 3 Stuart DR. Bertrand-Laperle M. Burgess KM. N. Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474
    • 4a Inman M. Moody CJ. Chem. Sci. 2013; 4: 29
    • 4b Satoh T. Miura M. Chem. Eur. J. 2010; 16: 11212
    • 4c Guo TL. Huang F. Yu LK. Yu ZK. Tetrahedron Lett. 2015; 56: 296
    • 4d Gulías M. Mascareñas JL. Angew. Chem. Int. Ed. 2016; 55: 11000
  • 5 Song JJ. Reeves JT. Gallou F. Tan ZL. Yee NK. Senanayake CH. Chem. Soc. Rev. 2007; 36: 1120

    • Redox neutral methods were not discussed. For examples, see:
    • 6a Liang Y. Jiao N. Angew. Chem. Int. Ed. 2016; 55: 4035
    • 6b Zhou SG. Wang JH. Zhang FF. Song C. Zhu J. Org. Lett. 2016; 18: 2427
    • 6c Lerchen A. Vasquez-Cespedes S. Glorius F. Angew. Chem. Int. Ed. 2016; 55: 3208
    • 6d Wang H. Moselage M. González MJ. Ackermann L. ACS Catal. 2016; 6: 2705
  • 7 Stuart DR. Alsabeh P. Kuhn M. Fagnou K. J. Am. Chem. Soc. 2010; 132: 18326
  • 8 Huestis MP. Chan LN. Stuart DR. Fagnou K. Angew. Chem. Int. Ed. 2011; 50: 1338
  • 9 Chen J. Song G. Pan C.-L. Li X. Org. Lett. 2010; 12: 5426
    • 10a Chen JL. Pang QY. Sun YB. Li XW. J. Org. Chem. 2011; 76: 3523
    • 10b Hu X. Chen X. Zhu Y. Deng Y. Zeng H. Jiang H. Zeng W. Org. Lett. 2017; 19: 3474
  • 11 Ackermann L. Lygin AV. Org. Lett. 2012; 14: 764
  • 12 Kang D. Hong S. Org. Lett. 2015; 17: 1938
  • 13 Shi ZZ. Zhang C. Li S. Pan DL. Ding ST. Cui YX. Jiao N. Angew. Chem. Int. Ed. 2009; 48: 4572
  • 14 Würtz S. Rakshit S. Neumann JJ. Dröge T. Glorius F. Angew. Chem. Int. Ed. 2008; 47: 7230
  • 15 Zhang GY. Yu H. Qin GP. Huang HM. Chem. Commun. 2014; 50: 4331
  • 16 Song WF. Ackermann L. Chem. Commun. 2013; 49: 6638
  • 17 Zhang Z.-Z. Liu B. Xu J.-W. Yan S.-Y. Shi B.-F. Org. Lett. 2016; 18: 1776
    • 18a Yoshida J. Kataoka K. Horcajada R. Nagaki A. Chem. Rev. 2008; 108: 2265
    • 18b Frontana-Uribe BA. Little RD. Ibanez JG. Palma A. Vasquez-Medrano R. Green Chem. 2010; 12: 2099
    • 18c Horn EJ. Rosen BR. Baran PS. ACS Cent. Sci. 2016; 2: 302
    • 18d Francke R. Little RD. Chem. Soc. Rev. 2014; 43: 2492
    • 18e Waldvogel SR. Janza B. Angew. Chem. Int. Ed. 2014; 53: 7122
    • 18f Francke R. Beilstein J. Org. Chem. 2014; 10: 2858
    • 18g Tang FL. Moeller KD. Tetrahedron 2009; 65: 10863
    • 18h Jiao K.-J. Zhao C.-Q. Fang P. Mei T.-S. Tetrahedron Lett. 2017; 58: 797
    • 19a Zhao H.-B. Hou Z.-W. Liu Z.-J. Zhou Z.-F. Song J. Xu H.-C. Angew. Chem. Int. Ed. 2017; 56: 587
    • 19b Xiong P. Xu H.-H. Xu H.-C. J. Am. Chem. Soc. 2017; 139: 2956
    • 19c Wu Z.-J. Xu H.-C. Angew. Chem. Int. Ed. 2017; 56: 4734
    • 19d Qian X.-Y. Li S.-Q. Song J. Xu H.-C. ACS Catal. 2017; 2730
    • 19e Zhu L. Xiong P. Mao ZY. Wang YH. Yan X. Lu X. Xu H.-C. Angew. Chem. Int. Ed. 2016; 55: 2226
    • 19f Hou ZW. Mao ZY. Zhao HB. Melcamu YY. Lu X. Song J. Xu H.-C. Angew. Chem. Int. Ed. 2016; 55: 9168
    • 19g Xu F. Zhu L. Zhu SB. Yan XM. Xu H.-C. Chem. Eur. J. 2014; 20: 12740
  • 20 Whittell LR. Batty KT. Wong RP. M. Bolitho EM. Fox SA. Davis TM. E. Murray PE. Bioorg. Med. Chem. 2011; 19: 7519
    • 21a Zard SZ. Chem. Soc. Rev. 2008; 37: 1603
    • 21b Chen JR. Hu XQ. Lu LQ. Xiao WJ. Chem. Soc. Rev. 2016; 45: 2044
    • 21c Xiong T. Zhang Q. Chem. Soc. Rev. 2016; 45: 3069