Synlett 2017; 28(15): 1857-1866
DOI: 10.1055/s-0036-1590841
synpacts
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Ring-Opening Polymerization of O-Carboxyanhydrides

Quanyou Feng
a   Center for Molecular Systems and Organic Devices, Institute of Optoelectronic Materials, Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. of China   Email: iamlhxie@njupt.edu.cn
b   Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA   Email: rtong@vt.edu
,
Yongliang Zhong
b   Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA   Email: rtong@vt.edu
,
Linghai Xie*
a   Center for Molecular Systems and Organic Devices, Institute of Optoelectronic Materials, Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. of China   Email: iamlhxie@njupt.edu.cn
,
Rong Tong  *
b   Department of Chemical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Road, Blacksburg, VA, 24061, USA   Email: rtong@vt.edu
› Author Affiliations
This work was supported by start-up funding from Virginia Polytechnic Institute and State University. Q.F. acknowledges support from National Natural Science Foundation of China (21504047), Natural Science Foundation of Jiangsu Province (BK20150834), Nanjing University of Posts and Telecommunications Scientific Foundation NUPTSF (NY214179).
Further Information

Publication History

Received: 06 May 2017

Accepted after revision: 21 June 2017

Publication Date:
03 August 2017 (online)


Abstract

Poly(α-hydroxy acids) are important biodegradable polymers with wide applications. Recently O-carboxyanhydrides (OCAs) have emerged as promising monomer equivalents of lactides to synthesize poly(α-hydroxy acids). We will highlight recent advances in controlled ring-opening polymerization of OCAs catalyzed by organocatalysts, enzymes, or organometallic complexes.

1 Introduction

2 Organocatalysts for O-Carboxyanhydride Polymerization

2.1 Synthesis of O-Carboxyanhydride Monomers

2.2 Ring-Opening Polymerization of O-Carboxyanhydrides Catalyzed by 4-Dimethylaminopyridine

2.3 Epimerization in the Ring-Opening Polymerization of O-Carboxyanhydrides Catalyzed by the Pyridine Base

2.4 N-Heterocyclic Carbenes for Ring-Opening Polymerization of O-Carboxyanhydrides

3 Enzymes for O-Carboxyanhydride Polymerization

4 Organometallic Catalysts for O-Carboxyanhydride Polymerization

4.1 Early Efforts

4.2 Ring-Opening Polymerization Catalyzed by Zn Complexes

4.3 Photoredox Ring-Opening Polymerization Catalyzed by Zn/Ni Complexes

5 Conclusion and Perspective

 
  • References

    • 1a Kataoka K. Harada A. Nagasaki Y. Adv. Drug Delivery Rev. 2001; 47: 113
    • 1b Rezwan K. Chen QZ. Blaker JJ. Boccaccini AR. Biomaterials 2006; 27: 3413
    • 2a Nagahata R. Sano D. Suzuki H. Takeuchi K. Macromol. Rapid Commun. 2007; 28: 437
    • 2b Odian G. Step Polymerization . In Principles of Polymerization . John Wiley and Sons; Hoboken, NJ: 2004: 39
    • 2c Lim YB. Kim CH. Kim K. Kim SW. Park JS. J. Am. Chem. Soc. 2000; 122: 6524
    • 3a Dechy-Cabaret O. Martin-Vaca B. Bourissou D. Chem. Rev. 2004; 104: 6147
    • 3b Albertsson AC. Varma IK. Biomacromolecules 2003; 4: 146686
    • 3c Hillmyer MA. Tolman WB. Acc. Chem. Res. 2014; 47: 2390
    • 3d Brown HA. Waymouth RM. Acc. Chem. Res. 2013; 46: 2585
    • 3e Lecomte P. Jerome C. Recent Developments in Ring-Opening Polymerization of Lactones . In Synthetic Biodegradable Polymers . Vol. 245. Rieger B. Kunkel A. Coates GW. Reichardt R. Dinjus E. Zevaco TA. Springer; Heidelberg Berlin: 2012. 245, 173-217
    • 3f Kiesewetter MK. Shin EJ. Hedrick JL. Waymouth RM. Macromolecules 2010; 43: 2093
    • 3g Ajellal N. Carpentier J.-F. Guillaume C. Guillaume SM. Helou M. Poirier V. Sarazin Y. Trifonov A. Dalton Trans. 2010; 39: 8363
    • 3h Wu JC. Yu TL. Chen CT. Lin CC. Coord. Chem. Rev. 2006; 250: 602
    • 3i Thomas CM. Chem. Soc. Rev. 2010; 39: 165
    • 3j Stanford MJ. Dove AP. Chem. Soc. Rev. 2010; 39: 486
  • 4 Madhavan Nampoothiri K. Nair NR. John RP. Bioresour. Technol. 2010; 101: 8493
    • 5a Jacobsen S. Fritz H.-G. Degée P. Dubois P. Jérôme R. Ind. Crops Prod. 2000; 11: 265
    • 5b Drumright RE. Gruber PR. Henton DE. Adv. Mater. 2000; 12: 1841
    • 6a Fraschini C. Plesu R. Sarasua J.-R. Prud'homme RE. J. Polym. Sci., Part B: Polym. Phys. 2005; 43: 3308
    • 6b Sarasua J.-R. Prud'homme RE. Wisniewski M. Le Borgne A. Spassky N. Macromolecules 1998; 31: 3895
    • 7a Martin-Vaca B. Bourissou D. ACS Macro Lett. 2015; 4: 792
    • 7b Tong R. Ind. Eng. Chem. Res. 2017; 56: 4207
    • 8a Noga DE. Petrie TA. Kumar A. Weck M. García AJ. Collard DM. Biomacromolecules 2008; 9: 2056
    • 8b Pounder RJ. Dove AP. Biomacromolecules 2010; 11: 1930
    • 8c Jiang X. Smith MR. Baker GL. Macromolecules 2008; 41: 318
    • 8d Jiang X. Vogel EB. Smith MR. Baker GL. Macromolecules 2008; 41: 1937
    • 9a Gerhardt WW. Noga DE. Hardcastle KI. García AJ. Collard DM. Weck M. Biomacromolecules 2006; 7: 1735
    • 9b Leemhuis M. van Nostrum CF. Kruijtzer JA. W. Zhong ZY. ten Breteler MR. Dijkstra PJ. Feijen J. Hennink WE. Macromolecules 2006; 39: 3500
    • 9c Leemhuis M. Akeroyd N. Kruijtzer JA. W. van Nostrum CF. Hennink WE. Eur. Polym. J. 2008; 44: 308
    • 9d Marcincinova-Benabdillah K. Boustta M. Coudane J. Vert M. Biomacromolecules 2001; 2: 1279
    • 9e Jiang X. Vogel EB. Smith MR. Baker GL. J. Polym. Sci., Part A: Polym. Chem. 2007; 45: 5227
    • 9f Zou J. Hew CC. Themistou E. Li Y. Chen C.-K. Alexandridis P. Cheng C. Adv. Mater. 2011; 23: 4274
    • 9g Coumes F. Darcos V. Domurado D. Li S. Coudane J. Polym. Chem. 2013; 4: 3705
    • 9h Yu Y. Zou J. Yu L. Ji W. Li Y. Law W.-C. Cheng C. Macromolecules 2011; 44: 4793
    • 9i du Boullay OT. Saffon N. Diehl J.-P. Martin-Vaca B. Bourissou D. Biomacromolecules 2010; 11: 1921
  • 10 Scheibelhoffer AS. Polym. Prepr. 1969; 10: 1375
    • 11a Fiore GL. Jing F. Young JV. G. Cramer CJ. Hillmyer MA. Polym. Chem. 2010; 1: 870
    • 11b Jing F. Hillmyer MA. J. Am. Chem. Soc. 2008; 130: 13826
  • 12 Davies WH. J. Chem. Soc. 1951; 1357
    • 13a Smith IJ. Tighe BJ. J. Polym. Sci., Polym. Chem. Ed. 1976; 14: 2293
    • 13b Smith IJ. Tighe BJ. J. Polym. Sci., Polym. Chem. Ed. 1976; 14: 949
    • 13c Smith IJ. Tighe BJ. Macromol. Chem. Phys. 1981; 182: 313
    • 13d Smith IJ. Tighe BJ. Chem. Ind. 1973; 695
    • 13e Tighe BJ. Chem. Ind. 1969; 1837
  • 14 Kricheldorf HR. Jonté JM. Polym. Bull. 1983; 9: 276
  • 15 du Boullay OT. Marchal E. Martin-Vaca B. Cossío FP. Bourissou D. J. Am. Chem. Soc. 2006; 128: 16442
  • 16 Yin Q. Yin L. Wang H. Cheng J. Acc. Chem. Res. 2015; 48: 1777
  • 17 du Boullay OT. Bonduelle C. Martin-Vaca B. Bourissou D. Chem. Commun. 2008; 1786
  • 18 Buchard A. Carbery DR. Davidson MG. Ivanova PK. Jeffery BJ. Kociok-Köhn GI. Lowe JP. Angew. Chem. Int. Ed. 2014; 53: 13858
  • 19 Yin Q. Tong R. Xu Y. Baek K. Dobrucki LW. Fan TM. Cheng J. Biomacromolecules 2013; 14: 920
  • 20 Lu Y. Yin L. Zhang Y. Zhang Z. Xu Y. Tong R. Cheng J. ACS Macro Lett. 2012; 1: 441
  • 21 Pounder RJ. Fox DJ. Barker IA. Bennison MJ. Dove AP. Polym. Chem. 2011; 2: 2204
    • 22a Zhang Z. Yin L. Tu C. Song Z. Zhang Y. Xu Y. Tong R. Zhou Q. Ren J. Cheng J. ACS Macro Lett. 2013; 2: 40
    • 22b Wang H. Tang L. Tu CL. Song Z. Yin Q. Yin L. Zhang Z. Cheng J. Biomacromolecules 2013; 14: 3706
  • 23 Chen X. Lai H. Xiao C. Tian H. Chen X. Tao Y. Wang X. Poly. Chem. 2014; 5: 6495
  • 24 Bonduelle C. Martin-Vaca B. Cossío FP. Bourissou D. Chem. Eur. J. 2008; 14: 5304
  • 25 Wang R. Zhang J. Yin Q. Xu Y. Cheng J. Tong R. Angew. Chem. Int. Ed. 2016; 55: 13010
  • 26 Zhang Z. Yin L. Xu Y. Tong R. Lu Y. Ren J. Cheng J. Biomacromolecules 2012; 13: 3456
  • 27 Xia H. Kan S. Li Z. Chen J. Cui S. Wu W. Ouyang P. Guo K. J. Polym. Sci., Part A: Polym. Chem. 2014; 52: 2306
  • 28 Bonduelle C. Martin-Vaca B. Bourissou D. Biomacromolecules 2009; 10: 3069
  • 29 Zhuang X.-L. Yu H.-Y. Tang Z.-H. Oyaizu K. Nishide H. Chen XS. Chin. J. Polym. Sci. 2010; 29: 197
  • 30 He Z. Jiang L. Chuan Y. Li H. Yuan M. Molecules 2013; 18: 12768
  • 31 Jia F. Chen X. Zheng Y. Qin Y. Tao Y. Wang X. Chem. Commun. 2015; 51: 8504
    • 32a Ovitt TM. Coates GW. J. Am. Chem. Soc. 1999; 121: 4072
    • 32b Chamberlain BM. Cheng M. Moore DR. Ovitt TM. Lobkovsky EB. Coates GW. J. Am. Chem. Soc. 2001; 123: 3229
    • 32c Ovitt TM. Coates GW. J. Am. Chem. Soc. 2002; 124
    • 32d Tong R. Cheng JJ. Angew. Chem. Int. Ed. 2008; 47: 4830
    • 32e Tong R. Cheng J. J. Am. Chem. Soc. 2009; 131: 4744
    • 32f Tong R. Cheng J. Macromolecules 2012; 45: 2225
    • 33a Cheng M. Darling NA. Lobkovsky EB. Coates GW. Chem. Commun. 2000; 2007
    • 33b Cheng M. Moore DR. Reczek JJ. Chamberlain BM. Lobkovsky EB. Coates GW. J. Am. Chem. Soc. 2001; 123: 8738
    • 33c Moore DR. Cheng M. Lobkovsky EB. Coates GW. J. Am. Chem. Soc. 2003; 125: 11911
  • 34 Feng Q. Tong R. J. Am. Chem. Soc. 2017; 139: 6177
    • 35a Le C. MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 11938
    • 35b Zuo ZW. Ahneman DT. Chu LL. Terrett JA. Doyle AG. MacMillan DW. C. Science 2014; 345: 437
    • 36a Deming TJ. Curtin SA. J. Am. Chem. Soc. 2000; 122: 5710
    • 36b Deming TJ. J. Am. Chem. Soc. 1998; 120: 4240
    • 36c Ishizu J. Yamamoto T. Yamamoto A. Chem. Lett. 1976; 10: 1091
    • 36d Yamamoto T. Igarashi K. Komiya S. Yamamoto A. J. Am. Chem. Soc. 1980; 102: 7448
    • 37a Johnson JB. Rovis T. Acc. Chem. Res. 2008; 41: 327
    • 37b Johnson JB. Bercot EA. Rowley JM. Coates GW. Rovis T. J. Am. Chem. Soc. 2007; 129: 2718