Synlett 2017; 28(18): 2439-2444
DOI: 10.1055/s-0036-1590840
cluster
© Georg Thieme Verlag Stuttgart · New York

Experimental and Theoretical Studies on the Reduction of CO2 to CO with Chloro(methyl)disilane Components from the Direct Process

Mathias Flinker
a   Carbon Dioxide Activation Center, Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
b   Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark   eMail: frj@chem.au.dk   eMail: ts@chem.au.dk
,
Sara Lopez
a   Carbon Dioxide Activation Center, Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
b   Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark   eMail: frj@chem.au.dk   eMail: ts@chem.au.dk
,
Dennis U. Nielsen
a   Carbon Dioxide Activation Center, Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
,
Kim Daasbjerg
a   Carbon Dioxide Activation Center, Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
,
Frank Jensen*
b   Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark   eMail: frj@chem.au.dk   eMail: ts@chem.au.dk
,
Troels Skrydstrup*
a   Carbon Dioxide Activation Center, Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
b   Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark   eMail: frj@chem.au.dk   eMail: ts@chem.au.dk
› Institutsangaben
We are deeply appreciative of generous financial support from the Danish National Research Foundation (grant no. DNRF118) and ­Aarhus University for support of this work.
Weitere Informationen

Publikationsverlauf

Received: 15. Mai 2017

Accepted after revision: 20. Juni 2017

Publikationsdatum:
21. Juli 2017 (online)


Published as part of the Cluster Silicon in Synthesis and Catalysis

Abstract

Three disilanes, (CH3)3SiSi(CH3)3, Cl(CH3)2SiSi(CH3)2Cl, and Cl2(CH3)SiSi(CH3)Cl2, all representing components of the Direct Process residue for the industrial synthesis of chloromethylsilanes, were evaluated for their abilities to reduce carbon dioxide to carbon monoxide upon treatment with fluoride salts. In particular, Cl(CH3)2SiSi(CH3)2Cl proved to be highly efficient upon the use of stoichiometric amounts of potassium bifluoride. DFT calculations performed on the reduction steps with (CH3)3SiSi(CH3)3 and fluorinated analogues of this disilane suggest that the previously proposed pathway involving an intermediate silacarboxylic acid is plausible.

Supporting Information

 
  • References and Notes

    • 1a Müller R. Chem. Tech. 1950; 2: 41
    • 1b Rochow EG. J. Am. Chem. Soc. 1945; 67: 963
    • 1c Seyferth D. Organometallics 2001; 20: 4978
    • 1d Kalchauer W. Pachaly B. Handbook of Heterogeneous Catalysis . Wiley-VCH; Weinheim: 2008
  • 2 Calas R. Dunogues J. Deleris G. Duffault N. J. Organomet. Chem. 1982; 225: 117
    • 3a Rücker C. Kümmerer K. Chem. Rev. 2015; 115: 466
    • 3b Baney RH. Gaul JH. Jr. Hilty TK. Organometallics 1983; 2: 859
    • 3c Knopf C. Herzog U. Roewer G. Brendler E. Rheinwald G. Lang H. J. Organomet. Chem. 2002; 662: 14
  • 4 Neumeyer F. Auner N. Chem. Eur. J. 2016; 22: 17165 ; this paper also provides a good overview on the patent literature dealing with the Direct Process

    • For examples of the use of silicon-based wastes as a reagent for CO2 conversion, see:
    • 5a Jacquet O. Gomes CD. N. Ephritikhine M. Cantat T. J. Am. Chem. Soc. 2012; 134: 2934
    • 5b Motokura K. Naijo M. Yamaguchi S. Miyaji A. Baba T. Chin. J. Catal. 2017; 38: 434
  • 6 Lescot C. Nielsen DU. Makarov IS. Lindhardt AT. Daasbjerg K. Skrydstrup T. J. Am. Chem. Soc. 2014; 136: 6142
  • 7 For a recent application of this chemistry for 11C isotope labeling in positron emission tomography, see: Taddei C. Bongarzone S. Gee A. Chem. Eur. J. 2017; 23: 7682
    • 8a Friis SD. Taaning RH. Lindhardt AT. Skrydstrup T. J. Am. Chem. Soc. 2011; 133: 18114
    • 8b Friis SD. Andersen TL. Skrydstrup T. Org. Lett. 2013; 15: 1378
  • 9 Lian Z. Nielsen DU. Lindhardt AT. Daasbjerg K. Skrydstrup T. Nat. Commun. 2016; 7: 13782
  • 10 Kumada M. Pure Appl. Chem. 1966; 13: 167
    • 11a Ansell MB. Roberts DE. Cloke GN. Navarro O. Spencer J. Angew. Chem. Int. Ed. 2015; 54: 5578
    • 11b Roscher A. Bockholt A. Braun T. Dalton Trans. 2009; 1378
    • 12a Hermange P. Lindhardt AT. Taaning RH. Bjerglund K. Lupp D. Skrydstrup T. J. Am. Chem. Soc. 2011; 133: 6061
    • 12b Friis SD. Lindhardt AT. Skrydstrup T. Acc. Chem. Res. 2016; 49: 594
  • 13 We observed gas evolution (bubbling) prior to CO2 injection using DMSO as the solvent at elevated temperature. We are currently examining this chemical transformation that is taking place with the solvent.
  • 14 General Procedure for Synthesizing N-Hexyl-4-methoxybenz­amide Using (Dichloro)tetramethyldisilane (Table 2, Entry 5) Chamber A In an argon-filled glovebox, Pd(dba)2 (14.4 mg, 0.025 mmol), PPh3 (10.1 mg, 0.050 mmol), 4-Iodoanisole (0.5 mmol), dioxane (3.0 mL), n-hexylamine (132 μL, 1.0 mmol), and Et3N (140 μL, 1.0 mmol) were added in that order to chamber A in a two-chamber system, COware. The system was sealed tightly using a screw cap lined with a Teflon®-coated silicone seal and a stabilizer disc. Chamber B In an argon-filled glovebox, KF (87.1 mg, 1.50 mmol), DMF (3.0 mL), and 1,2-(dichloro)tetramethyldisilane (93.1 μL, 0.5 mmol) were added in that order to chamber B in the two-chamber system. The system was sealed tightly using a screw cap lined with a Teflon®-coated silicone seal and a stabilizer disc. The loaded two-chamber system was removed from the glovebox, and CO2 (21 mL, 1.7 mmol) was injected with a syringe. The reaction was heated to 80 °C overnight. The crude residue was purified by flash chromatography using pentane/EtOAc (3:1) as eluent. This resulted in 101 mg (86% yield) of the title compound obtained as a pale yellow solid. 1H NMR (400 MHz, CDCl3): δ = 7.72 (d, J = 8.7 Hz, 2 H), 6.92 (d, J = 8.7 Hz, 2 H), 6.02 (br s, 1 H), 3.84 (s, 3 H), 3.43 (td, J = 7.3, 5.8 Hz, 2 H), 1.60 (q, J = 7.5, 2 H), 1.43–1.24 (m, 6 H), 0.90 (t, J = 6.7 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.1, 162.1, 128.7 (2 C), 127.3, 113.9 (2 C), 55.5, 40.2, 31.7, 29.9, 26.8, 22.7, 14.2. HRMS: m/z calcd for C14H22NO2[M + H+]: 236.1645; found: 236.1648.
  • 15 Chai J.-D. Head-Gordon M. Phys. Chem. Chem. Phys. 2008; 10: 6615
  • 16 Jensen F. J. Chem. Theory Comput. 2014; 10: 1074
  • 17 Cances E. Mennucci B. Tomasi J. J. Chem. Phys. 1997; 107: 3032
  • 18 Frisch MJ. Trucks GW. Schlegel HB. Scuseria GE. Robb MA. Cheeseman JR. Scalmani G. Barone V. Mennucci G. Petersson GA. Nakatsuji H. Caricato M. Li X. Hratchian HP. Izmaylov AF. Bloino J. Zheng G. Sonnenberg JL. Hada M. Ehara M. Toyota K. Fukuda R. Hasegawa J. Ishida M. Nakajima T. Honda Y. Kitao O. Nakai H. Vreven T. Montgomery JJ. A. Peralta JE. Ogliaro F. Bearpark M. Heyd JJ. Brothers E. Kudin KN. Staroverov VN. Kobayashi R. Normand J. Raghavachari K. Rendell A. Burant JC. Iyengar SS. Tomasi J. Cossi M. Rega N. Millam JM. Klene M. Knox JE. Cross VB. J. B. Adamo C. Jaramillo J. Gomperts R. Stratmann RE. Yazyev O. Austin AJ. Cammi R. Pomelli C. Ochterski JW. Martin RL. Morokuma K. Zakrzewski VG. Voth GA. Salvador P. Dannenberg JJ. Dapprich S. Daniels AD. Farkas Ö. Foresman JB. Ortiz JV. Cioslowski J. Fox DJ. Gaussian 09, Revision D.01 . Gaussian, Inc; Wallingford, CT: 2009
    • 19a Hiyama T. Obayashi M. Mori I. Nozaki H. J. Org. Chem. 1983; 48: 912
    • 19b Mita T. Suga K. Sato K. Sato Y. Org. Lett. 2015; 17: 5276
  • 20 Uematsu R. Yamamoto E. Maeda S. Ito H. Taketsugu T. J. Am. Chem. Soc. 2015; 137: 4090