Synlett 2017; 28(15): 1923-1928
DOI: 10.1055/s-0036-1590797
cluster
© Georg Thieme Verlag Stuttgart · New York

Investigation of Cysteine as an Activator of Side-Chain N→S Acyl Transfer and Tail-to-Side-Chain Cyclization

Durbis J. Castillo-Pazos, Derek Macmillan*
  • Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK   Email: d.macmillan@ucl.ac.uk
Further Information

Publication History

Received: 03 May 2017

Accepted after revision: 22 May 2017

Publication Date:
14 July 2017 (eFirst)

Published as part of the Cluster Recent Advances in Protein and Peptide Synthesis

Abstract

N→S Acyl transfer is a popular method for the postsynthesis production of peptide C α-thioesters for use in native chemical ligation and for the synthesis of head-to-tail cyclic peptides. Meanwhile thioester formation at the side chain of aspartic or glutamic acids, leading to tail-to-side-chain-cyclized species, is less common. Herein we explore the potential for cysteine to function as a latent thioester when appended to the side chain of glutamic acid. Initial insights gained through study of C-terminal β-alanine as a model for the increased chain length were ultimately applied to peptide macrocyclization. Our results emphasize the increased barrier to acyl transfer at the glutamic acid side chain and indicate how a slow reaction, facilitated by cysteine itself, may be accelerated by fine-tuning of the stereoelectronic environment.

Supporting Information

 
  • References and Notes

    • 1a Northfield SE. Wang CK. Schroeder CI. Durek T. Kan M.-W. Swedberg JE. Craik DJ. Eur J. Med. Chem. 2014; 77: 248
    • 1b Poth AG. Chan LY. Craik DJ. Pept. Sci. 2013; 100: 480
    • 1c Young TS. Young DD. Ahmad I. Louis JM. Benkovic SJ. Schultz PG. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 11052
    • 2a White CJ. Yudin AK. Nat. Chem. 2011; 3: 509
    • 2b Yudin AK. Chem. Sci. 2015; 6: 30
    • 3a Camarero JA. Cotton GJ. Adeva A. Muir TW. J. Peptide Res. 1998; 51: 303
    • 3b Tam JP. Lu Y.-A. Tetrahedron Lett. 1997; 38: 5599
    • 3c Tavassoli A. Benkovic SJ. Nat. Protoc. 2007; 2: 1126
    • 3d Jagadish K. Gould A. Borra R. Majumder S. Mushtaq Z. Shekhtman A. Camarero JA. Angew. Chem. Int. Ed. 2015; 54: 8390
    • 3e Nguyen GK. T. Qiu Y. Cao Y. Hemu X. Liu C.-F. Tam JP. Nat. Protoc. 2016; 11: 1977
    • 3f Palei S. Mootz HD. ChemBioChem. 2016; 17: 378
    • 3g Jia X. Kwon S. Wang C.-IA. Huang Y.-H. Chan LY. Tan CC. Rosengren KJ. Mulvenna JP. Schroeder CI. Craik DJ. J. Biol. Chem. 2014; 289: 6627
    • 3h Harris KS. Durek T. Kaas Q. Poth AG. Gilding EK. Conlan BF. Saska I. Daly NL. van der Weerden NL. Craik DJ. Anderson MA. Nat. Commun. 2015; 6: 10199
    • 3i Iwane Y. Hitomi A. Murakami H. Katoh T. Goto Y. Suga H. Nat. Chem. 2016; 8: 317
    • 3j Passioura T. Suga H. Chem. Commun. 2017; 53: 1931
    • 4a Macmillan D. Synlett 2017; 28: in press ; DOI: 10.1055/s-0036-1588789
    • 4b Melnyk O. Agouridas V. Curr. Opin. Chem. Biol. 2014; 22: 137
    • 4c Zheng J.-S. Tang S. Huang Y.-C. Liu L. Acc. Chem. Res. 2013; 46: 2475
    • 5a Adams AL. Macmillan D. J. Pept. Sci. 2013; 19: 65
    • 5b Chen W. Kinsler VA. Macmillan D. Di W.-L. PLoS One 2016; 11: e0166268
    • 5c Macmillan D. De Cecco M. Reynolds NL. Santos LF. A. Barran PE. Dorin JR. ChemBioChem. 2011; 12: 2133
    • 5d Cowper B. Shariff L. Chen W. Gibson SM. Di W.-L. Macmillan D. Org. Biomol. Chem. 2015; 13: 7469
    • 6a Cowper B. Craik DJ. Macmillan D. ChemBioChem. 2013; 14: 809
    • 6b Shariff L. Zhu Y. Cowper B. Di W.-L. Macmillan D. Tetrahedron 2014; 70: 7675
    • 7a Hegemann JD. Zimmermann M. Xie X. Marahiel MA. Acc. Chem. Res. 2015; 48: 1909
    • 7b Al Toma RS. Kuthning A. Exner MP. Denisiuk A. Ziegler J. Budisa N. Süssmuth RD. ChemBioChem. 2015; 16: 503
  • 8 Boll E. Dheur J. Drobecq H. Melnyk O. Org. Lett. 2012; 14: 2222
    • 9a Boll E. Drobecq H. Lissy E. Cantrelle F.-X. Melnyk O. Org. Lett. 2016; 18: 3842
    • 9b Raibaut L. Drobecq H. Melnyk O. Org. Lett. 2015; 17: 3636
  • 10 Nguyen DP. Elliott T. Holt M. Muir TW. Chin JW. J. Am. Chem. Soc. 2011; 133: 11418
  • 11 See Supporting Information for full experimental details.
  • 12 Burlina F. Papageorgiou G. Morris C. White PD. Offer J. Chem. Sci. 2014; 5: 766
    • 13a Adams AL. Cowper B. Morgan RE. Premdjee B. Caddick S. Macmillan D. Angew. Chem. Int. Ed. 2013; 52: 13062
    • 13b Li Y.-M. Li Y.-T. Pan M. Kong X.-Q. Huang Y.-C. Hong Z.-Y. Liu L. Angew. Chem. Int. Ed. 2014; 53: 2198
    • 13c Zheng J.-S. Tang S. Guo Y. Chang H.-N. Liu L. ChemBioChem. 2012; 13: 542
    • 13d Fang G.-M. Li Y.-M. Shen F. Huang Y.-C. Li J.-B. Lin Y. Cui H.-K. Liu L. Angew. Chem. Int. Ed. 2011; 50: 7645
  • 14 Shin HJ. Matsuda H. Murakami M. Yamaguchi K. Tetrahedron 1996; 52: 13129
  • 15 Hudlický M. J. Fluorine Chem. 1993; 60: 193
  • 16 Konas DW. Coward JK. J. Org. Chem. 2001; 66: 8831
  • 17 Buckingham F. Kirjavainen AK. Forsback S. Krzyczmonik A. Keller T. Newington IM. Glaser M. Luthra SK. Solin O. Gouverneur V. Angew. Chem. Int. Ed. 2015; 13564
  • 18 Richardson JP. Chan C.-H. Blanc J. Saadi M. Macmillan D. Org. Biomol. Chem. 2010; 8: 1351
  • 19 Haag T. Hughes RA. Ritter G. Schmidt RR. Eur. J. Org. Chem. 2007; 6016
  • 20 Synthesis of Dipeptides 15a,b Cysteine derivative 14a (0.437 g, 1.04 mmol) was dissolved in anhydrous CH2Cl2 (6.0 mL). Fmoc-Glu-OAll (0.512 g, 1.25 mmol) and pyBOP (0.595 g, 1.5 mmol) were added, followed by DIPEA (0.362 mL, 2.1 mmol), and the reaction mixture was stirred at r.t. for 1 h. The reaction mixture was then diluted with EtOAc (50 mL) and washed with sat. aq KHSO4 (1 × 15 mL) and sat. aq NaHCO4 (2 × 15 mL). The organic phase was separated, dried (MgSO4), and evaporated to afford the crude product as a white foam. Purification by flash column chromatography over silica, eluent toluene–EtOAc (5:1) afforded 15a (0.719 g; 85%) as a white foam. Dipeptide 15a 1H NMR (500 MHz, CDCl3): δ = 7.76 (2 H, d, J = 8.0 Hz, 2 × ArH), 7.62 (2 H, d, J = 7.4 Hz, 2 × ArH), 7.44–7.15 (ca. 19 H, m (overlapped by CDCl3 signal), ArH ), 6.15 (1 H, d, J = 7.6 Hz, CH allyl), 5.93–5.85 (1 H, m, CH allyl), 5.74 (1 H, d, J = 8.0 Hz, CH allyl), 5.35–5.24 (2 H, 2 × d, 2 × NH), 4.64 (2 H, s (br), CH2-allyl), 4.52–4.50 (1 H, m, CHα), 4.43–4.38 (3 H, m, CHα, CH2-Fmoc), 4.23 (1 H, t, J = 7.0 Hz, CH-Fmoc), 2.79–2.54 (2 H, m CH-cys), 2.33–1.97 (4 H, m, CH-Glu and CH-Glu), 1.45 (9 H, s, tBu). ESI+-MS: m/z calced for C49H50N2O7S: 810.33; found: 811.5 Da [MH]+ and 833.5 Da [MNa]+. Dipeptide 15b Procedure as above, 53% isolated as a white foam. 1H NMR (300 MHz, CDCl3): δ = 7.78 (2 H, d, J = 7.5 Hz, 2 × ArH), 7.61 (2 H, d, J = 7.4 Hz, 2 × ArH), 7.42–7.17 (ca. 19 H, m (overlapped by CDCl3 signal), ArH ), 6.39 (1 H, s (br), CH allyl), 5.86–5.83 (2 H, m, 2 × CH allyl), 5.35–5.21 (2 H, 2 × d, 2 × NH), 4.63 (2 H, d (br), CH2-allyl) 4.42–4.37 (3 H, m, CHα-Glu, CH2-Fmoc) 4.23 (1 H, t (br), CH-Fmoc), 3.04 (1 H, d, J = 11.3 Hz, half CH-αMeCys), 2.60 (1 H, d, J = 11.3 Hz, half CH-αMeCys), 2.36–2.05 (4 H, m, CH-Glu and CH-Glu), 1.45 (12 H, s (br), CH3, tBu). ESI+-MS: m/z calcd for C50H52N2O7S: 824.35; found: 825.5 Da [MH]+ and 847.5 Da [MNa]+.
  • 21 Hang J. Li H. Deng L. Org. Lett. 2002; 4: 3321
  • 22 Bayro MJ. Mukhopadhyay J. Swapna GV. T. Huang JY. Ma L.-C. Sineva E. Dawson PE. Montelione GT. Ebright RH. J. Am. Chem. Soc. 2003; 125: 12382
  • 23 Lyophilized peptide 18 was dissolved in ddH2O to a final concentration of 2 mg/mL; 0.5 mL was transferred to a sterile Eppendorf tube and water (0.3 mL) was added followed by 1 M sodium phosphate buffer (pH 5.8, 0.1 mL), TCEP·HCl (5 mg), and sodium 2-mercaptoethanesulfonate (MESNa, 0.1 g). The reaction mixture was shaken (700 rpm) in an Eppendorf thermomixer at 50 °C for 24 h. The cyclic peptide was then purified from the reaction mixture by preparative HPLC; t R= 26.5 min, and lyophilized to afford the pure product as fluffy white solid. ESI+-MS: m/z calcd: 912.4; found: 913.2 Da [MH]+.
  • 24 Sohma Y. Hua Q.-X. Whittaker J. Weiss MA. Kent SB. H. Angew. Chem. Int. Ed. 2010; 49: 5489