Synlett 2017; 28(15): 1907-1912
DOI: 10.1055/s-0036-1590794
cluster
© Georg Thieme Verlag Stuttgart · New York

Convergent Total Synthesis of Histone H2B Protein with Site-Specific Ubiquitination at Lys120

Yun-Kun Qi, Qiao-Qiao He, Hua-Song Ai, Jia-Bin Li*, Ji-Shen Zheng*
This work was funded by the National Natural Science Foundation of China (grant number 21402206), the Natural Science Foundation of Anhui Province (1508085QB30) and the Beijing National Laboratory for Molecular Sciences (No. 20140124).
Further Information

Publication History

Received: 13 April 2017

Accepted after revision: 28 May 2017

Publication Date:
11 July 2017 (eFirst)

Published as part of the Cluster Recent Advances in Protein and Peptide Synthesis

Abstract

Histone H2B Lys120 mono-ubiquitylation (H2BK120Ub) plays an important role in regulating gene expression and diverse nuclear processes. For biochemical and biophysical studies of this dynamic post-translational modification, access to homogeneous and workable amount of H2BK120Ub is obligatory. Here we report a new strategy for the convergent total chemical synthesis of homogenous histone H2BK120Ub on multi-milligram scale through the combination of hydrazide-based native chemical ligation and acid-cleavable auxiliary-mediated ligation of peptide hydrazides. The synthetic H2BK120Ub could be efficiently incorporated into nucleosomes, which may provide valuable materials for the biochemical and structural studies of nucleosome complexes involving H2BK120Ub.

Supporting Information

 
  • References and Notes

  • 1 Luger K. Mader AW. Richmond RK. Sargent DF. Richmond TJ. Nature (London) 1997; 389: 251
  • 2 Huang H. Lin S. Garcia BA. Zhao Y. Chem. Rev. 2015; 115: 2376
    • 3a Tessarz P. Kouzarides T. Nat. Rev. Mol. Cell Biol. 2014; 15: 703
    • 3b Muller MM. Muir TW. Chem. Rev. 2015; 115: 2296
    • 3c Bowman GD. Poirier MG. Chem. Rev. 2015; 115: 2274
    • 4a Debelouchina GT. Gerecht K. Muir TW. Nat. Chem. Biol. 2017; 13: 105
    • 4b Wilson MD. Benlekbir S. Fradet-Turcotte A. Sherker A. Julien JP. McEwan A. Noordermeer SM. Sicheri F. Rubinstein JL. Durocher D. Nature (London) 2016; 536: 100
    • 4c Fuchs G. Oren M. Biochim. Biophys. Acta 2014; 1839: 694
    • 5a McGinty RK. Kim J. Chatterjee C. Roeder RG. Muir TW. Nature (London) 2008; 453: 812
    • 5b Weake VM. Workman JL. Mol. Cell 2008; 29: 653
    • 5c Kim J. Guermah M. McGinty RK. Lee J. Tang Z. Milne TA. Shilatifard A. Muir TW. Roeder RG. Cell 2009; 137: 459
    • 5d Gopinath P. Ohayon S. Nawatha M. Brik A. Chem. Soc. Rev. 2016; 45: 4171
    • 5e Sun ZW. Allis CD. Nature (London) 2002; 418: 104
    • 6a Mali SM. Singh SK. Eid E. Brik A. J. Am. Chem. Soc. 2017; 139: 4971
    • 6b Nguyen UT. Bittova L. Muller MM. Fierz B. David Y. Houck-Loomis B. Feng V. Dann GP. Muir TW. Nat. Methods 2014; 11: 834
    • 6c David Y. Vila-Perello M. Verma S. Muir TW. Nat. Chem. 2015; 7: 394
    • 7a Holt M. Muir T. Annu. Rev. Biochem. 2015; 84: 265
    • 7b Howard CJ. Yu RR. Gardner ML. Shimko JC. Ottesen JJ. Top. Curr. Chem. 2015; 363: 193
    • 7c Bondalapati S. Jbara M. Brik A. Nat. Chem. 2016; 8: 407
    • 7d Maity SK. Jbara M. Brik A. J. Pept. Sci. 2016; 22: 252
    • 7e Yang R. Liu CF. Top. Curr. Chem. 2015; 362: 89
    • 7f Yu RR. Mahto SK. Justus K. Alexander MM. Howard CJ. Ottesen JJ. Org. Biomol. Chem. 2016; 14: 2603
    • 8a Chatterjee C. McGinty RK. Pellois JP. Muir TW. Angew. Chem. Int. Ed. 2007; 46: 2814
    • 8b McGinty RK. Kohn M. Chatterjee C. Chiang KP. Pratt MR. Muir TW. ACS Chem. Biol. 2009; 4: 958
    • 8c Fierz B. Kilic S. Hieb AR. Luger K. Muir TW. J. Am. Chem. Soc. 2012; 134: 19548
    • 9a Ajish Kumar KS. Haj-Yahya M. Olschewski D. Lashuel HA. Brik A. Angew. Chem. Int. Ed. 2009; 48: 8090
    • 9b Seenaiah M. Jbara M. Mali SM. Brik A. Angew. Chem. Int. Ed. 2015; 54: 12374
    • 10a Yang R. Pasunooti KK. Li F. Liu XW. Liu CF. J. Am. Chem. Soc. 2009; 131: 13592
    • 10b El Oualid F. Merkx R. Ekkebus R. Hameed DS. Smit JJ. de Jong A. Hilkmann H. Sixma TK. Ovaa H. Angew. Chem. Int. Ed. 2010; 49: 10149
    • 10c Merkx R. de Bruin G. Kruithof A. van den Bergh T. Snip E. Lutz M. El Oualid F. Ovaa H. Chem. Sci. 2013; 4: 4494
    • 11a Kumar KS. Spasser L. Ohayon S. Erlich LA. Brik A. Bioconjug. Chem. 2011; 22: 137
    • 11b Haj-Yahya M. Eltarteer N. Ohayon S. Shema E. Kotler E. Oren M. Brik A. Angew. Chem. Int. Ed. 2012; 51: 11535
    • 11c Jbara M. Maity SK. Morgan M. Wolberger C. Brik A. Angew. Chem. Int. Ed. 2016; 55: 4972
    • 12a Chatterjee C. McGinty RK. Fierz B. Muir TW. Nat. Chem. Biol. 2010; 6: 267
    • 12b Fierz B. Chatterjee C. McGinty RK. Bar-Dagan M. Raleigh DP. Muir TW. Nat. Chem. Biol. 2011; 7: 113
    • 12c Holt MT. David Y. Pollock S. Tang Z. Jeon J. Kim J. Roeder RG. Muir TW. Proc. Natl. Acad. Sci. USA 2015; 112: 10365
    • 12d Zhou L. Holt MT. Ohashi N. Zhao A. Muller MM. Wang B. Muir TW. Nat. Commun. 2016; 7: 10589
    • 13a Morgan MT. Haj-Yahya M. Ringel AE. Bandi P. Brik A. Wolberger C. Science 2016; 351: 725
    • 13b Long L. Furgason M. Yao T. Methods 2014; 70: 134
  • 14 Machida S. Sekine S. Nishiyama Y. Horikoshi N. Kurumizaka H. Open. Biol. 2016; 6: 160090
  • 15 Fradet-Turcotte A. Canny MD. Escribano-Diaz C. Orthwein A. Leung CC. Huang H. Landry MC. Kitevski-LeBlanc J. Noordermeer SM. Sicheri F. Durocher D. Nature (London) 2013; 499: 50
  • 16 Bi X. Yang R. Feng X. Rhodes D. Liu CF. Org. Biomol. Chem. 2016; 14: 835
    • 17a Siman P. Karthikeyan SV. Nikolov M. Fischle W. Brik A. Angew. Chem. Int. Ed. 2013; 52: 8059
    • 17b Li J. He Q. Liu Y. Liu S. Tang S. Li C. Sun D. Li X. Zhou M. Zhu P. Bi G. Zhou Z. Zheng JS. Tian C. ChemBioChem 2017; 18: 176
    • 17c Jbara M. Maity SK. Seenaiah M. Brik A. J. Am. Chem. Soc. 2016; 138: 5069
    • 17d He QQ. Qi YK. Liu C. Li JB. Hu HG. Synlett 2017; DOI: DOI: 10.1055/s-0036-1588744.
  • 18 Qi YK. He QQ. Ai HS. Guo J. Li JB. Chem. Commun. 2017; 53: 4148
    • 19a Fang GM. Li YM. Shen F. Huang YC. Li JB. Lin Y. Cui HK. Liu L. Angew. Chem. Int. Ed. 2011; 50: 7645
    • 19b Fang G.-M. Wang J.-X. Liu L. Angew. Chem. Int. Ed. 2012; 51: 10347
    • 19c Zheng JS. Tang S. Qi YK. Wang ZP. Liu L. Nat. Protoc. 2013; 8: 2483
    • 19d Li Y.-M. Li Y.-T. Pan M. Kong X.-Q. Huang Y.-C. Hong Z.-Y. Liu L. Angew. Chem. Int. Ed. 2014; 53: 2198
    • 19e Tang S. Si YY. Wang ZP. Mei KR. Chen X. Cheng JY. Zheng JS. Liu L. Angew. Chem. Int. Ed. 2015; 54: 5713
    • 19f Zheng JS. He Y. Zuo C. Cai XY. Tang S. Wang ZA. Zhang LH. Tian CL. Liu L. J. Am. Chem. Soc. 2016; 138: 3553
    • 19g Qi YK. Chang HN. Pan KM. Tian CL. Zheng JS. Chem. Commun. 2015; 51: 14632
    • 19h Dawson PE. Muir TW. Clark-Lewis I. Kent SB. H. Science 1994; 266: 776
    • 20a Botti P. Carrasco MR. Kent SB. H. Tetrahedron Lett. 2001; 42: 1831
    • 20b Macmillan D. Anderson DW. Org. Lett. 2004; 6: 4659
    • 20c Weller CE. Huang W. Chatterjee C. ChemBioChem 2014; 15: 1263
    • 20d Yang R. Bi X. Li F. Cao Y. Liu CF. Chem. Commun. 2014; 50: 7971
    • 20e Loibl SF. Harpaz Z. Seitz O. Angew. Chem. Int. Ed. 2015; 54: 15055
    • 20f Pan M. Gao S. Zheng Y. Tan X. Lan H. Tan X. Sun D. Lu L. Wang T. Zheng Q. Huang Y. Wang J. Liu L. J. Am. Chem. Soc. 2016; 138: 7429
    • 20g Gao S. Pan M. Zheng Y. Huang Y. Zheng Q. Sun D. Lu L. Tan X. Tan X. Lan H. Wang J. Wang T. Wang J. Liu L. J. Am. Chem. Soc. 2016; 138: 14497
  • 21 Wan Q. Danishefsky SJ. Angew. Chem. Int. Ed. 2007; 46: 9248
    • 22a Pentelute BL. Kent SB. H. Org. Lett. 2007; 9: 687
    • 22b Maity SK. Jbara M. Laps S. Brik A. Angew. Chem. Int. Ed. 2016; 55: 8108
    • 23a Lowary PT. Widom J. J. Mol. Biol. 1998; 276: 19
    • 23b Dyer PN. Edayathumangalam RS. White CL. Bao Y. Chakravarthy S. Muthurajan UM. Luger K. Methods Enzymol. 2004; 375: 23