Synlett 2018; 29(05): 645-649
DOI: 10.1055/s-0036-1589145
letter
© Georg Thieme Verlag Stuttgart · New York

Magnetic Graphitic Carbon Nitride-Catalyzed Highly Efficient Construction of Functionalized 4H-Pyrans

a  Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran
b  Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran   Email: azizi@ccerci.ac.ir
,
Tahereh Soleymani Ahooie
b  Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran   Email: azizi@ccerci.ac.ir
,
Mohammad Mahmodi Hashemi
b  Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran   Email: azizi@ccerci.ac.ir
,
Issa Yavari
b  Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran   Email: azizi@ccerci.ac.ir
› Author Affiliations
Financial support of this work by the Chemistry and Chemical Engineering Research Center of Iran is gratefully appreciated.
Further Information

Publication History

Received: 02 October 2017

Accepted after revision: 08 November 2017

Publication Date:
03 January 2018 (online)

Abstract

A high-yielding, practical, efficient, and environmentally benign one-pot multicomponent synthesis of functionalized 2-amino-4H-pyrans from β-dicarbonyl compounds, malononitrile, and aldehydes is presented. Good to excellent yields were obtained under mild reaction condition and with short reaction times by using magnetite-supported graphitic carbon nitride as a truly recyclable catalyst. This efficient and simple technique avoids the use of solvent extraction and column chromatography. In addition, the catalyst can be easily and effectively recovered and reused several times without significant loss of its catalytic activity.

 
  • References and Notes

    • 1a Dömling A. Chem. Rev. 2006; 106: 17
    • 1b Ramón DJ. Yus M. Angew. Chem. Int. Ed. 2005; 44: 1602
    • 1c Toure BB. Hall DG. Chem. Rev. 2009; 109: 4439
    • 1d de Graaff C. Ruijter E. Orru R. Chem. Soc. Rev. 2012; 41: 3969
    • 1e Shivani BP. Chakraborti AK. J. Org. Chem. 2007; 72: 3713
    • 1f Pujala B. Rana S. Chakraborti AK. J. Org. Chem. 2011; 76: 8768
    • 1g Chakraborti AK. Rudrawar S. Kondaskar A. Eur. J. Org. Chem. 2004; 3597
    • 1h Chakraborti A. Rudrawara S. Kondaskar A. Org. Biomol. Chem. 2004; 2: 1277
    • 2a Liu P. Hao J.-W. Mo L.-P. Zhang Z.-H. RSC Adv. 2015; 5: 48675
    • 2b Gu Y. Green Chem. 2012; 14: 2091
    • 2c Orru RV. A. de Greef M. Synthesis 2003; 1471
    • 2d Hu H.-C. Liu Y.-H. Li B.-L. Cui Z.-S. Zhang Z.-H. RSC Adv. 2015; 5: 7720
    • 3a Slobbe P. Ruijter E. Orru R. Med. Chem. Commun. 2012; 3: 1189
    • 3b Gu Y. Jérôme F. Green Chem. 2010; 12: 1127
    • 3c Gu Y. Jérôme F. Chem. Soc. Rev. 2013; 42: 9550
  • 4 Saleh TS. Abd El-Rahman NM. Elkateb AA. Shaker NO. Mahmoud NA. Gabal SA. Ultrason. Sonochem. 2012; 19: 491
  • 5 Pratap UR. Jawale DV. Netankar PD. Mane RA. Tetrahedron Lett. 2011; 52: 5817
  • 6 Peng Y. Song G. Catal. Commun. 2007; 8: 111
    • 7a Wang L.-M. Shao J.-H. Tian H. Wang Y.-H. Liu B. J. Fluorine Chem. 2006; 127: 97
    • 7b Balalaie S. Bararjanian M. Sheik-Ahmadi M. Hekmat S. Salehi P. Synth. Commun. 2007; 37: 1097
    • 7c Devi I. Bhuyan PJ. Tetrahedron Lett. 2004; 45: 8625
    • 7d Lian X.-Z. Huang Y. Li Y.-Q. Zheng WO. J. Monatsh. Chem. 2008; 139: 129
    • 7e Beerappa M. Shivashankar K. RSC Adv. 2015; 5: 30364
    • 7f Singh K. Singh J. Singh H. Tetrahedron 1996; 52: 14273
    • 7g Kaupp G. Naimi-Jama MR. Schmeyers J. Tetrahedron 2003; 59: 3753
    • 7h Gao S. Tsai CH. Tseng C. Yao C.-F. Tetrahedron 2008; 64: 9143
    • 7i Rosati O. Pelos A. Temperini A. Pace V. Curini M. Synthesis 2016; 48: 1533
    • 7j Azizi N. Dezfooli S. Mahmoudi Hashemi M. J. Mol. Liq. 2014; 194: 62
    • 7k Azizi N. Dezfooli S. Khajeh M. Hashemi MM. J. Mol. Liq. 2013; 186: 76
    • 7l Khan AT. Lal M. Ali S. Khan MM. Tetrahedron Lett. 2011; 52: 5327
    • 7m Guo R.-Y. An Z.-M. Mo L.-P. Wang R.-Z. Liu H.-X. Wang S.-X. Zhang Z.-H. ACS Comb. Sci. 2013; 15: 557
    • 7n Sun W.-B. Zhang P. Fan J. Chen S.-H. Zhang Z.-H. Synth. Commun. 2010; 40: 587
    • 7o Rahala, Rai P. Ibad A. Sagir H. Siddiqui IR. ChemistrySelect 2016; 1: 1300
    • 8a Azizi N. Khajeh-Amiri A. Ghafuri H. Bolourtchian M. Mol. Diversity 2011; 15: 157
    • 8b Azizi N. Saidi MR. Phosphorus, Sulfur Silicon Relat. Elem. 2003; 178: 1255
    • 8c Mirmashhori B. Azizi N. Saidi MR. J. Mol. Catal. A: Chem. 2006; 247: 159
    • 9a Tan C. Cao X. Wu X.-J. He Q. Yang J. Zhang X. Chen J. Zhao W. Han S. Nam G.-H. Sindoro M. Zhang H. Chem. Rev. 2017; 117: 6225
    • 9b Cha C. Shin SR. Annabi N. Dokmec MR. Khademhosseini A. ACS Nano 2013; 7: 2891
    • 10a Kumar S. Surendar T. Kumar B. Baruah A. Shanker V. J. Phys. Chem. C 2013; 117: 26135
    • 10b Schultz DM. Yoon TP. Science 2014; 343: 1239176
    • 11a Wang A. Wang C. Fu L. Wong-Ng W. Lan Y. Nano-Micro Lett. 2017; 9: 47
    • 11b Ong W.-J. Tan L.-L. Ng YH. Yong S.-T. Chai S.-P. Chem. Rev. 2016; 116: 7159
    • 11c Li X. Yu J. Low J. Fang Y. Xiao J. Chen X. J. Mater. Chem. A 2015; 3: 2485
    • 11d Xu Y.-S. Zhang WD. ChemCatChem 2013; 5: 2343
    • 12a Mamba G. Mishra AK. Appl. Catal., B 2016; 198: 347
    • 12b Qiu Y. Xin L. Jia F. Xie J. Li W. Langmuir 2016; 32: 12569
    • 12c Wang P. Lu N. Su Y. Liu N. Yu H. Li J. Wu Y. Appl. Surf. Sci. 2017; 423: 197
    • 12d Wei Y. Zeng X. Synlett 2016; 27: 650
    • 12e Lu J. Li X.-T. Ma E.-Q. Mo L.-P. Zhang Z.-H. ChemCatChem 2014; 6: 2854
  • 13 4H-Pyrans; General Procedure A mixture of the appropriate aldehyde 1 (1.0 mmol), malononitrile (2; 1.0 mmol), 1,3-dicarbonyl compound 3 (1.0 mmol), and Fe3O4@g-C3N4 (20 mg) in EtOH (1 mL) was stirred at 60 °C for 60 min until the reaction was complete (TLC). EtOH (10 mL) was added, and the Fe3O4@g-C3N4 was separated with an external magnet. The crude product was then crystallized from EtOH. 2-Amino-7,7-dimethyl-5-oxo-4-phenyl-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (4a) Colorless crystals; yield: 143 mg (97%); mp 228–230 °C. 1H NMR (CDCl3, 500 MHz): δ = 7.38–7.00 (m, 7 H, PhH and NH2), 4.30 (s, 1 H), 5.23 (s, 2 H), 2.39 (m, 2 H), 2.13–2.15 (m, 2 H), 1.03 (s, 3 H), 0.98 (s, 3 H). 13C NMR (CDCl3, 125 MHz): δ = 196.8, 162.8, 157.9, 144.3, 129.5, 128.8, 127.9, 118.8, 114.7, 61.9, 51.6, 35.9, 33.0, 29.6, 28.1.
  • 14 Preparation of the magnetic g-C3N4 catalyst A g-C3N4 nanosheet was prepared by directly calcining melamine in air. An alumina crucible with a loose cover containing melamine (2.0 g) was placed in a muffle furnace, and the temperature was programmed to 550 °C for 5 h at an initial ramp rate of 5 °C/min. After heat treatment, bulk g-C3N4 was obtained as a pale-yellow powder (see Ref. 10a). This bulk g-C3N4 (1.0 g) was added to a second alumina crucible, which was heated at 550 °C for 2 h, with initial heating at a rate of 10 °C/min, to obtain white g-C3N4 nanosheets. In the final step, Fe3O4@g-C3N4 was prepared by the reported method (Ref. 10). The g-C3N4 (500 mg) was dispersed in 1:1 EtOH–H2O by sonication at r.t. FeCl3·6H2O (1.838 g, 0.0216 mol) and FeCl2·4H2O (0.703 g, 0.0108 mol) were dissolved in the dispersion by sonication for 30 min, and then 28% aq NH3 (10 mL) was rapidly added to the stirred solution. The mixture was stirred under N2 for 30 min at 80 °C, then cooled to r.t. The solid was separated magnetically, washed with H2O and EtOH, and dried overnight at 60 °C under vacuum.