Synlett 2017; 28(19): 2599-2603
DOI: 10.1055/s-0036-1589120
cluster
© Georg Thieme Verlag Stuttgart · New York

Catalytic α-Arylation of Ketones with Heteroaromatic Esters

Ryota Isshiki
a  Department of Applied Chemistry, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan   Email: junyamaguchi@waseda.jp
,
Ryosuke Takise
b  Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
,
Kenichiro Itami
b  Graduate School of Science and Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
c  JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya 464-8602, Japan
,
Kei Muto
a  Department of Applied Chemistry, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan   Email: junyamaguchi@waseda.jp
,
Junichiro Yamaguchi*
a  Department of Applied Chemistry, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan   Email: junyamaguchi@waseda.jp
› Author Affiliations
This work was supported by JSPS KAKENHI Grant Number JP16H01011, JP16H04148 (to J.Y.) and JP17K14453 (to K.M.), the ERATO program from JST (to K.I.), the Early Bird Program of Waseda University (to K.M.), and a JSPS research fellowship for young scientists (to R.T.). ITbM is supported by the World Premier International Research Center (WPI) Initiative, Japan.
Further Information

Publication History

Received: 22 July 2017

Accepted after revision: 26 September 2017

Publication Date:
23 October 2017 (eFirst)

Published as part of the Cluster C–O Activation

Abstract

Heteroaromatic esters were found to be applicable as an arylating agent for the Pd-catalyzed α-arylation of ketones in a decarbonylative fashion. The use of our in-house ligand, dcypt, enabled this unique bond formation. Considering the ubiquity and low cost of ­aromatic esters, the present work will allow for rapid access to valuable α-aryl carbonyl compounds.

Supporting Information

 
  • References and Notes


    • For selected reviews and accounts, see:
    • 1a Bellina F. Rossi R. Chem. Rev. 2010; 110: 1082
    • 1b Johansson CC. C. Colacot TJ. Angew. Chem. Int. Ed. 2010; 49: 676
    • 1c Noväk P. Martin R. Curr. Org. Chem. 2011; 15: 3233
    • 1d Culkin DA. Hartwig JF. Acc. Chem. Res. 2003; 36: 234
  • 2 Satoh T. Kawamura Y. Miura M. Nomura M. Angew. Chem., Int. Ed. Engl. 1997; 36: 1740
  • 3 Palucki M. Buchwald SL. J. Am. Chem. Soc. 1997; 119: 11108
  • 4 Hamann BC. Hartwig JF. J. Am. Chem. Soc. 1997; 119: 12382
    • 5a Viciu MS. Germaneau RF. Nolan SP. Org. Lett. 2002; 4: 4053
    • 5b Liao X. Weng Z. Hartwig JF. J. Am. Chem. Soc. 2008; 130: 195
    • 6a Nguyen HN. Huang X. Buchwald SL. J. Am. Chem. Soc. 2003; 125: 11818
    • 6b Hesp KD. Lundgren RJ. Stradiotto M. J. Am. Chem. Soc. 2011; 133: 5194
    • 6c Ackermann L. Mehta VP. Chem. Eur. J. 2012; 18: 10230
    • 6d Alsabeh PG. Stradiotto M. Angew. Chem. Int. Ed. 2013; 52: 7242
    • 7a Takise R. Muto K. Yamaguchi J. Itami K. Angew. Chem. Int. Ed. 2014; 53: 6791
    • 7b Koch E. Takise R. Studer A. Yamaguchi J. Itami K. Chem. Commun. 2015; 51: 855
    • 8a Muto K. Hatakeyama T. Yamaguchi J. Itami K. Chem. Sci. 2015; 6: 6792
    • 8b Takise R. Itami K. Yamaguchi J. Org. Lett. 2016; 18: 4428
    • 8c Steinberg DF. Turk MC. Kalyani D. Tetrahedron 2017; 73: 2196
  • 9 Dcypt is currently commercially available from KANTO Chemical Co. (Product No. 05806-65).
  • 10 Cornella J. Jackson EP. Martin R. Angew. Chem. Int. Ed. 2015; 54: 4075

    • For examples from our group, see:
    • 11a Amaike K. Muto K. Yamaguchi J. Itami K. J. Am. Chem. Soc. 2012; 134: 13573
    • 11b Meng L. Kamada Y. Muto K. Yamaguchi J. Itami K. Angew. Chem. Int. Ed. 2013; 52: 10048
    • 11c Muto K. Yamaguchi J. Musaev DG. Itami K. Nat. Commun. 2015; 6: 7508
    • 11d Amaike K. Itami K. Yamaguchi J. Chem. Eur. J. 2016; 22: 4384
    • 11e Muto K. Hatakeyama T. Itami K. Yamaguchi J. Org. Lett. 2016; 18: 5106
    • 11f Okita T. Kumazawa K. Takise R. Muto K. Itami K. Yamaguchi J. Chem. Lett. 2017; 46: 218
    • 11g Takise R. Isshiki R. Muto K. Itami K. Yamaguchi J. J. Am. Chem. Soc. 2017; 139: 3340

      Representative examples from other groups. For esters, see:
    • 12a Gooßen LJ. Paetzold J. Angew. Chem. Int. Ed. 2002; 41: 1237
    • 12b Gooßen LJ. Paetzold J. Angew. Chem. Int. Ed. 2004; 43: 1095
    • 12c Wang J. Liu B. Zhao H. Wang J. Organometallics 2012; 31: 8598
    • 12d LaBerge NA. Love JA. Eur. J. Org. Chem. 2015; 5546
    • 12e Guo L. Chatupheeraphat A. Rueping M. Angew. Chem. Int. Ed. 2016; 55: 11810
    • 12f Pu X. Hu J. Zhao Y. Shi Z. ACS Catal. 2016; 6: 6692
    • 12g Yue H. Guo L. Liao H.-H. Cai Y. Zhu C. Rueping M. Angew. Chem. Int. Ed. 2017; 56: 4282
    • 12h Liu X. Jia J. Rueping M. ACS Catal. 2017; 7: 4491
    • 12i Tatamidani H. Kakiuchi F. Chatani N. Org. Lett. 2004; 6: 3597
    • 12j Hie L. Fine Nathel NF. Hong X. Yang Y.-F. Houk KN. Garg NK. Angew. Chem. Int. Ed. 2016; 55: 2810
    • 12k Ben Halima T. Zhang W. Yalaoui I. Hong X. Yang Y.-F. Houk KN. Newman SG. J. Am. Chem. Soc. 2017; 139: 1311

    • For amides, see:
    • 12l Kajita Y. Matsubara S. Kurahashi T. J. Am. Chem. Soc. 2008; 130: 6058
    • 12m Li H. Miao T. Wang M. Li P. Wang L. Synlett 2016; 27: 1635
    • 12n Meng G. Szostak M. Angew. Chem. Int. Ed. 2015; 54: 14518
    • 12o Shi S. Meng G. Szostak M. Angew. Chem. Int. Ed. 2016; 55: 6959
    • 12p Hie L. Fine Nathel NF. Shah TK. Baker EL. Hong X. Yang Y.-F. Liu P. Houk KN. Garg NK. Nature 2015; 524: 79
    • 12q Weires NA. Baker EL. Garg NK. Nat. Chem. 2016; 8: 75
    • 12r Baker EL. Yamano MM. Zhou Y. Anthony SM. Garg NK. Nat. Commun. 2016; 7: 11554

      For reviews, see:
    • 13a Takise R. Muto K. Yamaguchi J. Chem. Soc. Rev. 2017; 46: 5864
    • 13b Dander JE. Garg NK. ACS Catal. 2017; 7: 1413
    • 13c Liu C. Szostak M. Chem. Eur. J. 2017; 23: 7157
    • 13d Correa A. Cornella J. Martin R. Angew. Chem. Int. Ed. 2013; 52: 1878

      Representative examples of coupling reactions of aliphatic esters, see:
    • 14a Edwards JT. Merchant RR. McClymont KS. Knouse KW. Qin T. Malins LR. Vokits B. Shaw SA. Bao D.-H. Wei F.-L. Zhou T. Eastgate MD. Baran PS. Nature 2017; 545: 213
    • 14b Qin T. Cornella J. Li C. Malins LR. Edwards JT. Kawamura S. Maxwell BD. Eastgate MD. Baran PS. Science 2016; 352: 801
  • 15 Nakamura K. Tobisu M. Chatani N. Org. Lett. 2015; 17: 6142
  • 16 3Aj was obtained as a mixture caused by ipso-substitution of fluoride by phenoxide during the reaction. See Supporting Information for details.
    • 17a Matthews WS. Bares JE. Bartmess JE. Bordwell FG. Cornforth FJ. Drucker GE. Margolin Z. McCallum RJ. McCollum GJ. Vanier NR. J. Am. Chem. Soc. 1975; 97: 7006
    • 17b Bordwell FG. Cornforth FJ. J. Org. Chem. 1978; 43: 1763
  • 18 Zhang J. Bellomo A. Creamer AD. Dreher SD. Walsh PJ. J. Am. Chem. Soc. 2012; 134: 13765
  • 19 Representative Experimental Procedure for Catalytic Decarbonylative α-Arylation of Ketones with Aromatic Esters A 20 mL glass vessel equipped with J. Young® O-ring tap containing a magnetic stirring bar and CsF (121.5 mg, 0.80 mmol, 2.0 equiv) was dried with a heatgun in vacuo and filled with N2 gas after cooling to room temperature. To this vessel were added aromatic phenyl ester 1A (130.2 mg, 0.40 mmol, 1.0 equiv), aryl ketones 2 (120.1 mg, 0.80 mmol, 2.0 equiv), Pd(OAc)2 (4.49 mg, 0.020 mmol, 5.0 mol%), and dcypt (19.1 mg, 0.040 mmol, 10 mol%). The vessel was vacuumed and refilled N2 gas three times. To this was added toluene (1.6 mL). The vessel was sealed with O-ring tap and then heated at 150 °C for 18 h in a 9-well aluminum reaction block with stirring. After cooling the reaction mixture to room temperature, the mixture was passed through a short silica gel pad with EtOAc as an eluent. The filtrate was concentrated and the residue was purified by Isolera® (hexane/EtOAc = 5:1) afforded 3Aa as a white solid (97.5 mg, 69% yield). Compound 3Aa: 1H NMR (400 MHz, CDCl3): δ = 8.20 (d, J = 8.8 Hz, 1 H), 8.11 (d, J = 8.8 Hz, 2 H), 8.04 (d, J = 8.8 Hz, 2 H), 7.86 (d, J = 8.8 Hz, 1 H), 7.73–7.67 (m, 2 H), 7.53–7.41 (m, 4 H), 6.95 (d, J = 8.8 Hz, 2 H), 4.71 (s, 2 H), 3.86 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 194.7, 163.9, 157.0, 148.5, 142.0, 139.5, 130.8, 130.5, 129.4, 129.3, 129.2, 128.7, 127.5, 126.7, 126.5, 123.5, 120.7, 114.0, 55.5, 42.1. ESI-HRMS: m/z calcd for C24H20NO2 [M + H]+: 354.1489; found: 354.1487.