Synlett 2018; 29(02): 235-237
DOI: 10.1055/s-0036-1589110
letter
© Georg Thieme Verlag Stuttgart · New York

Zirconyl Nitrate as an Efficient Catalyst for Facile Synthesis of 2-Aryl-2,3-dihydroquinolin-4(1H)-one Derivatives in Aqueous ­Medium

Amarsinha Gorepatil
a   Department of Chemistry, S. G. R. G. Shinde College, Paranda, Dist-Osmanabad (MH), 413 505, India
,
Pratapsinha Gorepatil
b   Department of Chemistry, Sangameshwar College, Solapur (MH), 413 001, India
,
Mahadev Gaikwad
c   Department of Chemistry, B. P. C. A. S. Angar, Dist- Solapur (MH), 413 214, India
,
Dattakumar Mhamane
b   Department of Chemistry, Sangameshwar College, Solapur (MH), 413 001, India
,
Ajit Phadkule
b   Department of Chemistry, Sangameshwar College, Solapur (MH), 413 001, India
,
Vilas Ingle*
d   Department of Chemistry, S. C. S. College, Omerga, Dist-Osmanabad (MH), 413 606, India   Email: inglevilas71@yahoo.in
› Author Affiliations
Further Information

Publication History

Received: 27 July 2017

Accepted after revision: 29 August 2017

Publication Date:
21 September 2017 (online)


Abstract

A simple, green, and efficient method is introduced for the synthesis of 2-aryl-2,3-dihydroquinolin-4(1H)-ones under mild reaction conditions with improved yields by intramolecular cyclization of o-aminochalcones with zirconyl nitrate [Zn(O)(NO3)2·nH2O] as a water-tolerant Lewis-acid catalyst.

 
  • References and Notes

    • 1a Kraus JM. Verlinde CL. M. J. Karimi M. Lepesheva GI. Gelb MH. Buckner FS. J. Med. Chem. 2009; 52: 1639
    • 1b Huang C.-C. Chang N.-C. Org. Lett. 2008; 10: 673
    • 1c Glasnov TN. Stadlbauer W. Kappe CO. J. Org. Chem. 2005; 70: 3864
    • 1d Claassen G. Brin E. Crogan-Grundy C. Vaillancourt MT. Zhang HZ. Cai SX. Drewe J. Tseng B. Kasibhatla S. Cancer Lett. 2009; 274: 243
    • 1e Hassanin HM. El-Edfawy SM. Heterocycles 2012; 85: 2421
    • 2a Manikandan R. Jeganmohan M. Org. Lett. 2014; 16: 3568
    • 2b Iwai T. Terao T. Fujihara J. Tsuji Y. J. Am. Chem. Soc. 2010; 132: 9602
    • 2c Kadnikov D. Larock RJ. Organomet. Chem. 2003; 687: 425
    • 2d Chen X. Cui X. Wu Y. Org. Lett. 2016; 18: 2411
    • 2e Peng X. Wang W. Jiang C. Sun D. Xu Z. Tung C. Org. Lett. 2014; 16: 5354
    • 3a Hradil P. Hlavác J. Soural M. Hajdúch M. Kolár M. Vecerová R. Mini-Rev. Med. Chem. 2009; 9: 696
    • 3b Larsen RD. In: Science of Synthesis . Vol. 15, Chap 15.4. Black DS. Thieme; Stuttgart: 2005: 551
    • 3c Xia Y. Yang Z.-Y. Xia P. Bastow KF. Tachibana Y. Kuo S.-C. Hamel E. Hackl T. Lee K.-H. J. Med. Chem. 1998; 41: 1155
    • 3d Zhang S.-X. Feng J. Kuo S.-C. Brossi A. Hamel E. Tropsha A. Lee K.-H. J. Med. Chem. 2000; 43: 167
    • 3e Singh OV. Kapil RS. Synlett 1992; 751
    • 4a Pandit RP. Sharma K. Lee YR. Synthesis 2015; 47: 3881
    • 4b Shintani R. Yamagami T. Kimura T. Hayashi T. Org. Lett. 2005; 7: 5317
    • 4c Lei B.-L. Ding C.-H. Hou X.-L. J. Am. Chem. Soc. 2009; 131: 18250
    • 4d Bhattacharya RN. Kundu P. Maiti G. Synth. Commun. 2010; 40: 476
    • 4e Castaing M. Wason SL. Estepa B. Hooper JF. Willis MC. Angew. Chem. Int. Ed. 2013; 52: 13280
    • 4f Rao VK. Rao MS. Kumar A. J. Heterocycl. Chem. 2011; 48: 1356
    • 5a Liu X. Lu Y. Org. Lett. 2010; 12: 5592
    • 5b Kanagaraj K. Pitchumani K. J. Org. Chem. 2013; 78: 744
    • 5c Chelghoum M. Bahnous M. Bouraiou A. Bouacida S. Belfaitah A. Tetrahedron Lett. 2012; 53: 4059
    • 6a Chandrasekhar S. Vijeender K. Sridhar C. Tetrahedron Lett. 2007; 48: 4935
    • 6b Zheng H. Liu Q. Wen S. Yang H. Luo Y. Tetrahedron: Asymmetry 2013; 24: 875
    • 7a Kumar KH. Muralidharan D. Perumal PT. Synthesis 2004; 63
    • 7b Varma RS. Saini RK. Synlett 1997; 857
    • 7c Ahmed N. van Lier JE. Tetrahedron Lett. 2006; 47: 2725
    • 7d Ahmed N. van Lier JE. Tetrahedron Lett. 2007; 48: 13
    • 7e Mondal B. Pan SC. Org. Biomol. Chem. 2014; 12: 9789
    • 7f Muthkrishnan M. Mujahid M. Punitharasu V. Dnyaneshwar DA. Synth. Commun. 2010; 40: 1391
    • 7g Kumar D. Patel G. Mishra BG. Varma RS. Tetrahedron Lett. 2008; 49: 6974
    • 7h Varma RS. J. Heterocycl. Chem. 1999; 36: 1565
    • 8a Hasaninejad A. Shekouhy M. Mohammadizadeh MR. Zare A. RSC Adv. 2012; 2: 6174
    • 8b Sheldon R. In Green Chemistry in the Pharmaceutical Industry . Dunn PJ. Wells AS. Williams MT. Wiley-VCH; Weinheim: 2010. Chap. 1 1
    • 8c Selvam JJ. P. Suresh V. Rajesh K. Reddy SR. Venkateswarlu Y. Tetrahedron Lett. 2006; 47: 2507
    • 8d Das B. Krishnaiah M. Venkateswarlu K. Tetrahedron Lett. 2006; 47: 6027
    • 8e Mantri K. Komura K. Sugi Y. Green Chem. 2005; 7: 677
    • 8f Corma A. García H. Chem. Rev. 2003; 103: 4307
    • 8g Kobayashi S. Manabe K. Acc. Chem. Res. 2002; 35: 209
    • 8h Shinde SS. Said MS. Surwase TB. Kumar P. Tetrahedron Lett. 2015; 56: 5916
  • 10 2-Aryl-2,3-dihydroquinolin-4(1H)-ones; General Procedure A mixture of the appropriate 2-aminochalcone (1 mmol), EtOH (2 mL), H2O (2 mL), and ZrO(NO3)2·nH2O (46 mg, 20 mol%) was heated with stirring at 50 °C while the progress of the reaction was monitored by TLC. The reaction was then quenched with H2O (5 mL), and the mixture was extracted with Et2O (3 × 10 mL). The combined organic extracts were washed with brine (5 mL) then dried (Na2SO4), filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel, hexane–EtOAc (10:1)]. 2-Phenyl-2,3-dihydroquinolin-4(1H)-one (Table 2, Entry 1)5b,6b,11 Off-white solid; yield: 218 mg (98%); mp 153–155 °C. IR (KBr): 3060, 3028, 1638, 1572, 1494, 1358, 1324, 1295, 1157, 1095, 974, 861 cm–1. 1H NMR (600 MHz, CDCl3): δ = 7.83 (dd, J = 8.5, 1.2 Hz, 1 H), 7.42 (d, J = 7.4 Hz, 2 H), 7.40–7.36 (m, 2 H), 7.35–7.33 (m, 2 H), 6.76 (t, J = 7.4 Hz, 1 H), 6.68 (d, J = 8.5 Hz, 1 H), 4.70 (dd, J = 13.5, 3.6 Hz, 1 H), 4.65 (s, 1 H, NH), 2.82 (dd, J = 16.3, 14.4 Hz, 1 H), 2.70 (dd, J = 15.6, 3.6 Hz, 1 H). 13C NMR (150 MHz, CDCl3): δ = 192.9, 152.4, 136.1, 128.6, 128.3, 127.4, 126.5, 119.2, 117.2, 116.7, 59.1, 45.7. MS (EI): m/z = 223.10 [M+]. 2-(4-Chlorophenyl)-2,3-dihydroquinolin-4(1H)-one (Table 2 Entry 2)4a,11,12 Red solid; yield: 249 mg (97%); mp 168–170 °C. IR (KBr): 3343, 3210, 2980, 1666, 1585, 1221, 1150, 750 cm–1. 1H NMR (600 MHz, CDCl3): δ = 7.83 (dd, J = 7.8, 1.2 Hz, 1 H), 7.38–7.31 (m, 5 H), 6.78 (t, J = 7.2 Hz, 1 H), 6.71 (d, J = 7.8 Hz, 1 H), 4.69 (dd, J = 14.5, 4.2 Hz, 1 H), 4.54 (s, 1 H, NH), 2.79 (dd, J = 17.3, 14.5 Hz, 1 H), 2.71 (dd, J = 17.3, 4.2 Hz, 1 H). 13C NMR (150 MHz, CDCl3): δ = 193.5, 152.3, 138.4, 136.4, 134.1, 129.2, 127.8, 127.5, 119.2, 118.7, 115.9, 57.8, 46.3. MS (EI): m/z = 257.07 [M+]. 2-(4-Methoxyphenyl)-2,3-dihydroquinolin-4(1H)-one (Table 2, Entry 10)3e,4a,13 Brown solid; yield: 250 mg (99%); mp 145–147 °C. IR (KBr): 3330, 3145, 2978, 2737, 1663, 1585, 1305, 1224, 1132cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.85 (dd, J = 7.8, 1.5 Hz, 1 H), 7.37–7.33 (m, 2 H), 7.31–7.28 (m, 1 H), 6.95–6.86 (m, 2 H), 6.81–6.74 (m, 1 H), 6.67 (d, J = 8.1 Hz, 1 H), 4.69 (dd, J = 13.5, 3.6 Hz, 1 H), 4.33 (s, 1 H, NH), 3.80 (s, 3 H), 2.89–2.70 (m, 2 H). 13C NMR (150 MHz, CDCl3): δ = 193.3, 158.9, 152.1, 135.5, 133.2, 127.9, 127.7, 119.1, 118.4, 116.0, 114.1, 58.0, 55.5, 46.6. MS (EI): m/z = 253.10 [M+]. 2-(4-Bromophenyl)-2,3-dihydroquinolin-4(1H)-one (Table 2, Entry 11)4a,6b,12 Brown solid; yield: 290 mg (96%); mp 167–169 °C. IR (KBr): 3324, 3053, 1654, 1492, 1325, 1110, 754 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.85 (dd, J = 7.8, 1.5 Hz, 1 H), 7.53–7.48 (m, 2 H), 7.36–7.30 (m, 3 H), 6.81–6.76 (m, 1 H), 6.70 (d, J = 8.2 Hz, 1 H), 4.71 (dd, J = 17.4, 4.8 Hz, 1 H), 4.44 (s, 1 H, NH), 2.87–2.77 (m, 1 H), 2.77–2.70 (m, 1 H). 13C NMR (75 MHz, CDCl3): δ = 193.7, 152.3, 141.3, 136.9, 132.3, 128.5, 127.8, 123.4, 119.2, 118.8, 117.1, 58.1, 47.1. MS (EI): m/z = 301.02 [M+].
  • 11 Torii S. Okumoto H. Xu LH. Sadakane M. Shostakovsky MV. Ponomaryov AB. Kalinin VN. Tetrahedron 1993; 49: 6773
  • 12 Chandrasekhar S. Chatla S. Mukhopadhyay D. Ganganna B. Vijeender S. Srihari P. Bhadra U. Bioorg. Med. Chem. Lett. 2012; 22: 645
  • 13 Xiao Z.-P. Li H.-Q. Shi L. Lv P.-C. Song Z.-C. Zhu H.-L. ChemMedChem 2008; 3: 1077