Synlett 2018; 29(01): 121-125
DOI: 10.1055/s-0036-1589097
letter
© Georg Thieme Verlag Stuttgart · New York

4-Ethoxy-1,1,1-trifluoro-3-buten-2-one (ETFBO), a Versatile Precursor for Trifluoromethyl-Substituted Heteroarenes – a Short Synthesis of Celebrex® (Celecoxib)

Heiko Sommer
a   Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) der Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany   Email: andreas.kirschning@oci.uni-hannover.de
,
Max Braun
b   Solvay Fluor GmbH, Hans-Böckler-Allee 20, 30173 Hannover, Germany
,
Benjamin Schröder
a   Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) der Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany   Email: andreas.kirschning@oci.uni-hannover.de
,
Andreas Kirschning*
a   Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ) der Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany   Email: andreas.kirschning@oci.uni-hannover.de
› Author Affiliations
The work was funded by the Deutsche Forschungsgemeinschaft (Cluster of Excellence REBIRTH; ‘From Regenerative Biology to Reconstructive Therapy’ EXC 62).
Further Information

Publication History

Received: 14 July 2017

Accepted after revision: 17 July 2017

Publication Date:
22 August 2017 (online)


Abstract

4-Ethoxy-1,1,1-trifluoro-3-buten-2-one (ETFBO) serves as a trifluoromethyl-containing building block for the preparation of trifluoromethyl-substituted thiophenes, furans, pyrrols, and piperazines. Key steps are an addition–elimination reaction to ETFBO followed by the thiazolium-catalyzed Stetter reaction. The scope of this chemistry was demonstrated in a new synthetic approach towards the COX-2 selective, nonsteroidal anti-inflammatory drug Celebrex® (celecoxib).

Supporting Information

 
  • References and Notes

  • 1 Wang J. Sánchez-Roselló M. Aceña JL. del Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432
    • 2a Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2b Müller K. Faeh C. Diederich F. Science 2007; 317: 1881
  • 3 Böhm H.-J. Banner D. Bendels S. Kansy M. Kuhn B. Müller K. Obst-Sander U. Stahl M. ChemBioChem 2004; 5: 637
  • 4 Hagmann WK. J. Med. Chem. 2008; 51: 4359
  • 5 Kuhn DG. Kamhi VM. Furch JA. Diehl RE. Lowen GT. Kameswaran V. Pestic. Sci. 1994; 41: 279
  • 6 Kirk KL. Org. Process Res. Dev. 2008; 12: 305
  • 7 Gerstenberger MR. C. Haas A. Angew. Chem., Int. Ed. Engl. 1981; 20: 647
  • 8 Zhou Y. Wang J. Gu Z. Wang S. Zhu W. Aceña JL. Soloshonok VA. Izawa K. Liu H. Chem. Rev. 2016; 116: 422
  • 9 Schlosser M. Angew. Chem. Int. Ed. 2006; 45: 5432
  • 10 Sato K. Tarui A. Omote M. Ando A. Kumadaki I. Synthesis 2010; 1865
  • 11 Burton DJ. Yang Z.-Y. Tetrahedron 1992; 48: 189
  • 12 Eisenberger P. Gischig S. Togni A. Chem. Eur. J. 2006; 12: 2579
    • 13a Fisher R. Lund A. WO 2006059103, 2006
    • 13b Braun M. WO 2010037688, 2010
  • 14 Frank R. Bahrenberg G. WO 2013045452, 2011
  • 15 Takabe F. Fukumoto S. WO 2007088876, 2007
  • 16 Zhu S. Qin C. Wang Y.-L. Chu Q. J. Fluorine Chem. 1999; 99: 183
  • 17 Matsumoto N. Takahashi M. Tetrahedron Lett. 2005; 46: 5551
  • 18 Zhang D. Yuan C. Eur. J. Org. Chem. 2007; 3916
  • 19 Linderman RJ. Jamois EA. Tennyson SD. J. Org. Chem. 1994; 59: 957
  • 20 Andrew RJ. Mellor JM. Tetrahedron 2000; 56: 7267
  • 21 Talley JJ. Penning TD. Collins PC. Rogier DJ. Malecha JW. Miyashiro J. Bertenshaw SR. Khanna IK. Granets MJ. Rogers RS. Carter JS. Docter SH. Yu SS. WO 1995015316, 1995
    • 22a Andrew RJ. Mellor JM. Tetrahedron 2000; 56: 7261
    • 22b Andrew RJ. Mellor JM. Reid G. Tetrahedron 2000; 56: 7255
  • 23 Nenajdenko VG. Krasovsky AL. Lebedev MV. Balenkova ES. Synlett 1997; 1349
  • 24 Sanin AV. Nenajdenko VG. Smolko KI. Denisenko DI. Balenkova ES. Synthesis 1998; 842
  • 25 Gorbunova MG. Gerus II. Kukhar VP. J. Fluorine Chem. 1993; 65: 25
  • 26 Reddy MV. R. Billa VK. Pallela VR. Mallireddigari MR. Boominathan R. Gabriel JL. Reddy EP. Bioorg. Med. Chem. 2008; 16: 3907
  • 27 Stetter H. Schreckenberg M. Angew. Chem., Int. Ed. Engl. 1973; 12: 81
  • 28 Jesberger M. Davis TP. Barner L. Synthesis 2003; 1929
    • 29a McCormack PL. Drugs 2011; 71: 2457
    • 29b Kumar V. Kaur K. Gupta GK. Gupta AK. Kumar S. Recent Pat. Inflammation Allergy Drug Discovery 2013; 124
    • 30a Anumula RR. Gilla G. Alla S. Akki TR. Bojja Y. US 7919633, 2011
    • 30b Ambati VR. R. Garaga S. Mallela SP. S. Meenakshisunderam S. WO 2010095024, 2010
  • 31 Oh LM. Tetrahedron Lett. 2006; 47: 7943
  • 32 4-[5-p-Tolyl-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzene-sulfonamide (Celecoxib®) (22) (E)-1,1,1-Trifluoro-4-p-tolylbut-3-en-2-one (2a, 856 mg, 4.00 mmol, 1.0 equiv) and 4-hydrazinylbenzenesulfonamide hydrochloride (21, 941 mg, 4.20 mmol, 1.05 equiv) were heated in 10 mL of EtOH for 18 h at 90 °C. After cooling to r.t. the reaction was terminated by addition of a sat. NH4Cl solution. The mixture was extracted twice with EtOAc, the combined organic extracts were washed with brine, dried over MgSO4, and concentrated under reduced pressure. The crude material was dissolved in 50 mL toluene, equipped with activated MnO2 (3.48 g, 40.0 mmol, 10 equiv), and sonicated for 18 h at r.t. The mixture was then filtered over Celite® with the aid of 100 mL EtOAc. The volatiles were removed under reduced pressure, and the residue was purified by flash chromatography (PE–EtOAc = 2:1 to 1:1) to give the title compound 22 (1.03 g, 2.70 mmol; 68% yield) as a colourless solid. 1H NMR (400 MHz, CDCl3, CHCl3= 7.26 ppm): δ = 2.39 (s, 3 H, CH3), 4.91 (s, 2 H, NH2), 6.76 (s, 1 H, pyrazol-H), 7.13 (m, 2 H, ArH), 7.20 (m, 2 H, ArH), 7.50 (m, 2 H, ArH), 7.92 (m, 2 H, ArH) ppm. 13C NMR (200 MHz, CDCl3, CDCl3 = 77.2 ppm): δ = 21.3, 106.4, 122.4, 125.6, 127.6, 128.7, 129.8, 139.8, 141.3, 142.6, 144.0, 144.3, 145.3 ppm. HRMS: m/z calcd for C17H15O2F3N3S [M + H+]: 382.0832; found: 382.0839.