Synlett 2017; 28(20): 2845-2850
DOI: 10.1055/s-0036-1589086
letter
© Georg Thieme Verlag Stuttgart · New York

A Bench-Stable Vilsmeier Reagent for in situ Alcohol Activation: Synthetic Application in the Synthesis of 2-Amino-2-Thiazolines

Pivotal Drug Substance Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA   Email: mcorbe01@amgen.com
,
Seb Caille
Pivotal Drug Substance Process Development, Amgen, One Amgen Center Drive, Thousand Oaks, CA 91320, USA   Email: mcorbe01@amgen.com
› Author Affiliations
Further Information

Publication History

Received: 15 June 2017

Accepted: 04 July 2017

Publication Date:
16 August 2017 (online)


This paper is dedicated to Professor Vic Snieckus in honor of his 80th birthday

Abstract

A robust, chemoselective direct condensation/cyclization of thioureas and amino alcohols is described. Employing a bench-stable Vilsmeier reagent, methoxymethylene-N,N-dimethyliminium methyl sulfate, the selective in situ activation of alcohols is achieved with high efficiency and broad functional-group tolerance. The reversible interaction of the Vilsmeier reagent with substrate was key to the success of this activation strategy.

Supporting Information

 
  • References and Notes

  • 2 Henkel T. Brunne RM. Müller H. Reichel F. Angew. Chem. Int. Ed. 1999; 38: 643
    • 3a Stirling CJ. M. Acc. Chem. Res. 1979; 12: 198
    • 3b Jaramillo P. Domingo LR. Pérez P. Chem. Phys. Lett. 2006; 420: 95
    • 3c Spahlinger G. Jackson JE. Phys. Chem. Chem. Phys. 2014; 16: 24559
    • 4a Clarke PA. Santos S. Martin WH. C. Green Chem. 2007; 9: 438
    • 4b Grondal C. Jeanty M. Enders D. Nat. Chem. 2010; 2: 167
    • 4c Gaich T. Baran PS. J. Org. Chem. 2010; 75: 4657
    • 4d Dach R. Song JJ. Roschangar F. Samstag W. Senanayake CH. Org. Process Res. Dev. 2012; 16: 1697
    • 5a Hirose D. Taniguchi T. Ishibashi H. Angew. Chem. Int. Ed. 2013; 52: 4613
    • 5b Fletcher S. Org. Chem. Front. 2015; 2: 739
    • 5c Buonomo JA. Aldrich CC. Angew. Chem. Int. Ed. 2015; 54: 13041
    • 5d Hirose D. Gazvoda M. Košmrlj J. Tamiguchi T. Org. Lett. 2016; 18: 4036
    • 7a Nawrat CC. Jamison CR. Slutskyy Y. MacMillan DW. C. Overman LE. J. Am. Chem. Soc. 2015; 137: 11270
    • 7b Zhang X. MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 13862
    • 8a Seybold G. J. Prakt. Chem. 1996; 338: 392
    • 8b Jones G. Stanforth SP. Org. React. 1997; 49: 1
    • 8c Jones G. Stanforth SP. Org. React. 2000; 56: 355
  • 9 Mayr H. Ofial AR. Tetrahedron Lett. 1997; 38: 3503
    • 10a Hanessian S. Plessas NR. Chem. Commun. 1967; 1152
    • 10b Dods RF. Roth JS. Tetrahedron Lett. 1969; 10: 165
    • 10c Hanessian S. Plessas NR. J. Org. Chem. 1969; 34: 2163
    • 10d Benazza M. Uzan R. Beaupère D. Demailly G. Tetrahedron Lett. 1992; 33: 4901
  • 11 Morita K. Noguchi S. Nishikawa M. Chem. Pharm Bull. 1959; 7: 896
    • 12a Barrett AG. M. Braddock DC. James RA. Koike N. Procopiou PA. J. Org. Chem. 1998; 63: 6273
    • 12b Rao M. Yang M. Kuehner D. Grosso J. Deshpande RP. Org. Process Res. Dev. 2003; 7: 547
    • 12c Caille S. Cui S. Hwang T.-L. Wang X. Faul MM. J. Org. Chem. 2009; 74: 3833
    • 13a Hafner K. Vöpel KH. Ploss G. König C. Justus Liebigs Ann. Chem. 1963; 661: 52
    • 13b Bredereck H. Effenberger F. Simchen G. Chem. Ber. 1963; 96: 1350
  • 14 Li BL. Ding SY. Ren YF. Wang LC. Jia YC. Zhang XQ. Gu HM. Bull. Korean Chem. Soc. 2013; 34: 1537
  • 15 Kantlehner W. Funke B. Chem. Ber. 1971; 104: 3711
    • 16a Kantlehner W. Gutbrod H.-D. Groß P. Liebigs Ann. Chem. 1979; 522
    • 16b Kantlehner W. Gutbrod H.-D. Liebigs Ann. Chem. 1979; 1362
    • 17a Wasserman HH. Ives JL. J. Org. Chem. 1985; 50: 3573
    • 17b Jarrahpour A. Zarei M. Tetrahedron 2010; 66: 5017
    • 17c Rai A. Rai VK. Singh AK. Yadav LD. S. Eur. J. Org. Chem. 2011; 4302
    • 17d Yao B. Shen C. Liang Z. Zhang Y. J. Org. Chem. 2014; 79: 936
  • 18 Hafner K. Vöpel KH. Ploss G. König C. Org. Synth. 1967; 47: 52
    • 19a Klayman DL. Woods TS. J. Org. Chem. 1975; 40: 2000
    • 19b Kim TH. Cha M.-H. Tetrahedron Lett. 1999; 40: 3125
    • 19c Kim TH. Min JK. Lee G.-J. Tetrahedron Lett. 1999; 40: 8201
    • 20a Gaumont A.-C. Gulea M. Levillain J. Chem. Rev. 2009; 109: 1371
    • 20b Just-Baringo X. Albericio F. Alvarez M. Curr. Top. Med. Chem. 2014; 14: 1244
  • 21 At elevated reaction temperatures, the decomposition of 3 in the presence of NaOAc is a competing pathway leading to the generation of MeOAc. This deleterious pathway can be circumvented through the use of i Pr2NEt. At ambient temperature, the background reaction of 3 and NaOAc is nonconsequential under the time scale of the reaction.
  • 22 Representative Procedure for the Preparation of 2-Amino-2-thiazoline 6 To a stirred solution of ethanolamine 5a (1.35 mL, 22.4 mmol, 1.10 equiv) in DMF (40.0 mL, 0.5 M) at r.t. was added phenyl isothiocyanate 4a (2.40 mL, 20.0 mmol, 1.00 equiv). After stirring for 2 min at r.t., Vilsmeier salt 3 (7.20 g, 30.0 mmol, 1.50 equiv), and NaOAc (2.51 g, 30.6 mmol, 1.50 equiv) were added sequentially. The reaction mixture was allowed to stir at r.t. until adjudged complete by TLC, generally 4 h. The reaction was diluted with EtOAc (120 mL) and sequentially washed with sat. aq NaHCO3 (40 mL) and brine (40 mL). The organic layer was dried over MgSO4, polish filtered, and concentrated under reduced pressure. The crude residue was purified by silica gel column chromatography (100% heptane to 80% EtOAc in heptane gradient) to give 6a (3.31 g, 18.6 mmol, 93% yield) as a white solid (mp 153 °C). Analytical Data for 6a 1H NMR (400 MHz, CDCl3): δ = 7.31–7.24 (m, 2 H), 7.16–7.08 (m, 2 H), 7.04–7.01 (m, 1 H), 6.36 (br s, 1 H), 3.78 (t, J = 7.04 Hz, 2 H), 3.27 (t, J = 7.04 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 161.83, 147.59, 128.89, 123.10, 121.12, 50.44, 31.81. ESI-HRMS: m/z calcd for C9H11N2S [M + H]+: 179.06349; found: 179.06375. TLC (EtOAc/heptane, 1:1): Rf = 0.22. The spectral properties are in agreement with those previously reported in the literature.6a
  • 23 See Supporting Information for further information.
  • 24 Evindar G. Batey RA. Org. Lett. 2003; 5: 133