Synlett 2017; 28(18): 2499-2504
DOI: 10.1055/s-0036-1589083
letter
© Georg Thieme Verlag Stuttgart · New York

Ammonium Iodide-Mediated Sulfenylation of 4-Hydroxycoumarins or 4-Hydroxyquinolinones with a Sulfonyl Chloride as a Sulfur Source

Tao Guo*
a   School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. of China   Email: taoguo@haut.edu.cn
b   School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, P. R. of China
,
Xu-Ning Wei
a   School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. of China   Email: taoguo@haut.edu.cn
› Author Affiliations
Financial support from Open Project of Grain and Corn Engineering Technology Research Center in State Administration of Grain (No. 24400042), the Doctoral Fund of Henan University of Technology (No. 2013BS053), the Colleges and Universities Key Research Program Foundation of Henan Province (No. 17A150006), the Science and Technology Foundation of Henan Province (No. 172102310621), and the Fundamental Research Funds for the Henan Provincial Colleges and Universities in Henan University of Technology (No. 2015QNJH08) are greatly appreciated
Further Information

Publication History

Received: 31 May 2017

Accepted after revision: 03 July 2017

Publication Date:
02 August 2017 (online)


Abstract

A novel ammonium iodide-induced sulfenylation of 4-hydroxycoumarins or 4-hydroxyquinolinones by using an aryl- or alkylsulfonyl chloride as the sulfur source gave a wide range of 3-sulfanyl-4-hydroxycoumarins or 3-sulfanyl-4-hydroxyquinolinones, respectively, in moderate to good yields. This method provides as a simple approach to the direct formation of C–S bonds, which is of high value and utility in the pharmaceutical industry.

Supporting Information

 
  • References and Notes

    • 1a Musa MA. Cooperwood JS. Khan MO. F. Curr. Med. Chem. 2008; 15: 2664
    • 1b Kempen I. Papapostolou D. Thierry N. Pochet L. Counerotte S. Masereel B. Foidart J.-M. Reboud-Ravaux M. Noël A. Pirotte B. Br. J. Cancer 2003; 88: 1111
    • 1c Spino C. Dodier M. Sotheeswaran S. Bioorg. Med. Chem. Lett. 1998; 8: 3475
    • 1d Anand P. Singh B. Singh N. Bioorg. Med. Chem. 2012; 20: 1175
    • 1e Secci S. Carradori S. Bolasco A. Chimenti P. Yáñez M. Ortuso F. Alcaro S. Eur. J. Med. Chem. 2011; 46: 4846
    • 1f Khoobi M. Alipour M. Zarei S. Jafarpour F. Shafiee A. Chem. Commun. 2012; 48: 2985
    • 1g Zhao J. Zhao Y. Fu H. Angew. Chem. Int. Ed. 2011; 50: 3769
    • 1h Mi X. Wang C. Huang M. Wu Y. Wu Y. J. Org. Chem. 2015; 80: 148
    • 1i Liu T. Ding Q. Zong Q. Qiu G. Org. Chem. Front. 2015; 2: 670
    • 1j Yan K. Yang D. Wei W. Wang F. Shuai Y. Li Q. Wang H. J. Org. Chem. 2015; 80: 1550
    • 1k Wolf FF. Klare H. Goldfuss B. J. Org. Chem. 2016; 81: 1762
    • 1l Carling RW. Leeson PD. Moore KW. Moyes CR. Duncton M. Hudson ML. Baker R. Foster AC. Grimwood S. Kemp JA. Marshall GR. Tricklebank MD. Saywell KL. J. Med. Chem. 1997; 40: 754
    • 1m Freeman GA. Andrews CW. III. Hopkins AL. Lowell GS. Schaller LT. Cowan JR. Gonzales SS. Koszalka GW. Hazen RJ. Boone LR. Ferris RG. Creech KL. Roberts GB. Short SA. Weaver K. Reynolds DJ. Milton J. Ren J. Stuart DI. Stammers DK. Chan JH. J. Med. Chem. 2004; 47: 5923
    • 1n Zhao Y.-H. Li Y. Guo T. Tang Z. Xie W. Zhao G. Tetrahedron Lett. 2016; 57: 2257
  • 2 Patil AD. Freyer AJ. Eggleston DS. Haltiwanger RC. Bean MF. Taylor PB. Caranfa MJ. Breen AL. Bartus HR. J. Med. Chem. 1993; 36: 4131
    • 3a Kraus JM. Verlinde CL. M. J. Karimi M. Karimi M. Lepesheva GI. Gelb MH. Buckner FS. J. Med. Chem. 2009; 52: 1639
    • 3b Tang Q. Zhai X. Tu Y. Wang P. Wang L. Wu C. Wang W. Xie H. Gong P. Zheng P. Bioorg. Med. Chem. Lett. 2016; 26: 1794
    • 3c Bailly C. Bal C. Barbier P. Combes S. Finet J.-P. Hildebrand M.-P. Peyrot V. Wattez N. J. Med. Chem. 2003; 46: 5437
    • 3d Rappl C. Barbier P. Bourgarel-Rey V. Grégoire C. Gilli R. Carre M. Combes S. Finet J.-P. Peyrot V. Biochemistry 2006; 45: 9210
    • 3e Zhao Y.-H. Li Y. Luo M. Tang Z. Deng K. Synlett 2016; 27: 2597
    • 4a Verotta L. Lovaglio E. Vidari G. Finzi PV. Neri MG. Raimondi A. Parapini S. Taramelli D. Riva A. Bombardelli E. Phytochemistry 2004; 65: 2867
    • 4b Naik M. Humnabadkar V. Tantry SJ. Panda M. Narayan A. Guptha S. Panduga V. Manjrekar P. Jena LK. Koushik K. Shanbhag G. Jatheendranath S. Manjunatha MR. Gorai G. Bathula C. Rudrapatna S. Achar V. Sharma S. Ambady A. Hegde N. Mahadevaswamy J. Kaur P. Sambandamurthy VK. Awasthy D. Narayan C. Ravishankar S. Madhavapeddi P. Reddy J. Prabhakar K. Saralaya R. Chatterji M. Whiteaker J. McLaughlin B. Chiarelli LR. Riccardi G. Pasca MR. Binda C. Neres J. Dhar N. Signorino-Gelo F. McKinney JD. Ramachandran V. Shandil R. Tommasi R. Iyer PS. Narayanan S. Hosagrahara V. Kavanagh S. Dinesh N. Ghorpade SR. J. Med. Chem. 2014; 57: 5419
  • 5 Brooker NL. Kuzimichev Y. Laas J. Commun. Agric. Appl. Biol. Sci. 2007; 72: 785
  • 6 Pierson J.-T. Dumètre A. Hutter S. Delmas F. Laget M. Finet J.-P. Azas N. Combes S. Eur. J. Med. Chem. 2010; 45: 864
    • 7a Lee K.-S. Kim H.-J. Kim G.-H. Shin I. Hong J.-I. Org. Lett. 2008; 10: 49
    • 7b Yoon S. Albers AE. Wong AP. Chang CJ. J. Am. Chem. Soc. 2005; 127: 16030
    • 7c Han Z.-X. Zhang X.-B. Li Z. Gong Y.-J. Wu X.-Y. Jin Z. He C.-M. Jian L.-X. Zhang J. Shen G.-L. Yu R.-Q. Anal. Chem. 2010; 82: 3108
    • 7d Chen C.-T. Huang W.-P. J. Am. Chem. Soc. 2002; 124: 6246
    • 7e Taki M. Desaki M. Ojida A. Iyoshi S. Hirayama T. Hamachi I. Yamamoto Y. J. Am. Chem. Soc. 2008; 130: 12564
    • 7f Li N. Xiang Y. Tong A. Chem. Commun. 2010; 46: 3363
    • 7g Kim SY. Park J. Koh M. Park SB. Hong J.-I. Chem. Commun. 2009; 4735
    • 8a Qiu J.-K. Hao W.-J. Wang D.-C. Wei P. Sun J. Jiang B. Tu S.-J. Chem. Commun. 2014; 50: 14782
    • 8b Tran LD. Popov I. Daugulis O. J. Am. Chem. Soc. 2012; 134: 18237
    • 8c Tyson EL. Ament MS. Yoon TP. J. Org. Chem. 2012; 78: 2046
    • 8d Yang F.-L. Wang F.-X. Wang T.-T. Wang Y.-J. Tian S.-K. Chem. Commun. 2014; 50: 2111
    • 8e Yang Y. Tang L. Zhang S. Guo X. Zha Z. Wang Z. Green Chem. 2014; 16: 4106
    • 8f Yoshimatsu M. Ohta K. Takahashi N. Chem. Eur. J. 2012; 18: 15602
    • 8g Kumaraswamy G. Raju R. Narayanarao V. RSC Adv. 2015; 5: 22718
    • 8h Zhao W. Zhou A. ChemCatChem 2015; 7: 3464
    • 8i Ravi C. Mohan DC. Adimurthy S. Org. Biomol. Chem. 2016; 14: 2282
    • 8j Schnell B. Kappe T. Monatsh. Chem. 1999; 130: 1147
    • 8k Akula R. Ibrahim H. RSC Adv. 2013; 3: 25719
  • 9 Parumala SK. R. Peddinti RK. Green Chem. 2015; 17: 4068
  • 10 Siama, Equbal D. Lavekar AG. Sinha AK. Org. Biomol. Chem. 2016; 14: 6111
  • 11 Paul S. Shrestha R. Edison TN. J. I. Lee YR. Kim SH. Adv. Synth. Catal. 2016; 358: 3050
    • 12a Wu Q. Zhao D. Qin X. Lan J. You J. Chem. Commun. 2011; 47: 9188
    • 12b Chen M. Huang Z.-T. Zheng Q.-Y. Chem. Commun. 2012; 48: 11686
    • 12c Wu Z. Li Y.-C. Ding W.-Z. Zhu T. Liu S.-Z. Ren X. Zou L.-H. Asian J. Org. Chem. 2016; 5: 625
    • 12d Chachignon H. Maeno M. Kondo H. Shibata N. Cahard D. Org. Lett. 2016; 18: 2467
    • 12e Zhao X. Wei A. Li T. Su Z. Chen J. Lu K. Org. Chem. Front. 2017; 4: 232
    • 13a Wang D. Guo S. Zhang R. Lin S. Yan Z. RSC Adv. 2016; 6: 54377
    • 13b Chen Y. Xiao F. Chen H. Liu S. Deng G.-J. RSC Adv. 2014; 4: 44621
    • 13c Zhang M. Zhang S. Liu M. Cheng J. Chem. Commun. 2011; 47: 11522
    • 13d Yu X. Wu Q. Wan H. Xu Z. Xu X. Wang D. RSC Adv. 2016; 6: 62298
  • 14 4-Hydroxy-3-sulfanylquinolin-2(1H)-ones 3ao and 4-Hydroxy-3-sulfanyl-2H-chromen-2-ones 5aq; General Procedure 1,4-Dioxane (0.5 mL) was added to flask charged with the appropriate 4-hydroxyquinolinone or 4-hydroxycoumarin (0.25 mmol), sulfonyl chloride (0.25 mmol), and NH4I (1 mmol), and the mixture was stirred at 110 °C under air for 6–12 hours until the reaction was complete (TLC). The mixture was then cooled to r.t., diluted with EtOAc (20 mL), and washed with H2O (10 mL). The aqueous layer was extracted with EtOAc (2 × 5 mL), and the organic phases were combined and dried (Na2SO4). After evaporation of the solvents, the residue was purified by flash column chromatography [silica gel, PE–EtOAc (4:1 to 1:1)] to afford the desired product 3 or 5. 4-Hydroxy-1-methyl-3-(4-tolylsulfanyl)quinolin-2(1H)-one (3a)[11]
    Yellow solid; yield: 58 mg (78%); mp 234–236 °C. IR (KBr): 2922, 2362, 1614, 1583, 1500, 1159, 1074, 802, 756 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.26 (s, 3 H), 3.71 (s, 3 H), 7.03 (d, J = 8.0 Hz, 2 H), 7.22–7.30 (m, 3 H), 7.36 (d, J = 8.8 Hz, 1 H), 7.65 (td, J = 1.6, 8.8 Hz, 1 H), 7.90 (s, 1 H), 8.06 (dd, J = 1.2, 8.0 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 21.1, 30.3, 103.2, 114.3, 114.4, 122.1, 125.1, 128.7, 130.1, 130.7, 132.8, 137.0, 140.4, 161.8, 163.2. HRMS: m/z [M + H]+ calcd for C17H16NO2S: 298.0896; found: 298.0909. 4-Hydroxy-3-(phenylsulfanyl)-2H-chromen-2-one (5a)[11] Yellow solid; yield: 54 mg (80 %); mp 198–200 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 7.15–7.21 (m, 3 H), 7.29 (d, J = 8.0 Hz, 2 H), 7.40–7.45 (m, 2 H), 7.70–7.75 (m, 1 H), 7.97 (dd, J = 1.2, 8.0 Hz, 1 H). 13C NMR (100 MHz, DMSO-d 6): δ = 94.3, 115.7, 116.5, 124.2, 124.4, 125.5, 126.2, 129.1, 133.7, 135.9, 153.0, 160.9, 168.5. HRMS: m/z [M + H]+ calcd for C15H11O3S: 271.04234; found: 271.04205.