Synlett 2017; 28(15): 1944-1949
DOI: 10.1055/s-0036-1589055
cluster
© Georg Thieme Verlag Stuttgart · New York

Cysteine-Free Intramolecular Ligation of N-Sulfanylethylanilide Peptide Using 4-Mercaptobenzylphosphonic Acid: Synthesis of Cyclic Peptide Trichamide

Keisuke Aiharaa, Tsubasa Inokumaa, Takahisa Jichua, Zhenjian Linb, Feixue Fuc, Kosuke Yamaokaa, Akira Shigenagaa, David A. Hutchinsc, Eric W. Schmidtb, Akira Otaka*a
  • aInstitute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Shomachi, Tokushima 770-8505, Japan   Email: aotaka@tokushima-u.ac.jp
  • bDepartment of Medicinal Chemistry, University of Utah, Salt Lake City UT 84112, USA
  • cDepartment of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
This research was supported in part by a Grant-in-Aid for Scientific Research (KAKENHI). K.A. is grateful for a JSPS fellowship (14J07568). T.J. is grateful for SUNBOR SCHOLARSHIP.
Further Information

Publication History

Received: 24 April 2017

Accepted after revision: 24 May 2017

Publication Date:
06 July 2017 (eFirst)

Published as part of the Cluster Recent Advances in Protein and Peptide Synthesis

Abstract

An N-sulfanylethylanilide (SEAlide)-based ligation was developed for the preparation of trichamide, a thiazole-containing cyclic peptide isolated from bloom-forming cyanobacterium Trichodesmium erythraeum. In this cysteine-free ligation, 4-mercaptobenzylphosphonic acid (MBPA) functions as a dual promoter both for the N–S acyl-transfer-mediated activation of the SEAlide unit and for subsequent ligation. Furthermore, we established a high-yielding route to enantiomerically pure thiazole amino acids using a one-pot Hantzsch process.

Supporting Information

 
  • References and Notes

  • 1 Tapeinou A. Matsoukas M.-T. Simal C. Tselios T. Biopolymers 2015; 10: 453
    • 2a Hruby V. J. Nat. Rev. Drug Discov. 2002; 1: 847
    • 2b Tsomaia N. Eur. J. Med. Chem. 2015; 94: 459
    • 2c Pelay-Gimeno M. Glas A. Koch O. Grossmann TN. Angew. Chem. Int. Ed. 2015; 54: 2
    • 3a Lambert JN. Mitchell JP. Roberts KD. J. Chem. Soc., Perkin Trans. 1 2001; 471
    • 3b Parenty A. Moreau X. Campagne JM. Chem. Rev. 2006; 106: 911
    • 3c White CJ. Yudin AK. Nat. Chem. 2011; 3: 509
    • 4a Zhang L. Tam JP. Tetrahedron Lett. 1997; 38: 4375
    • 4b Zhang L. Tam JP. J. Am. Chem. Soc. 1999; 121: 3311
    • 4c Li Y. Yongye A. Giulianotti M. Martinez-Mayorga K. Yu Y. Houghten RA. J. Comb. Chem. 2009; 11: 1066
    • 4d Li Y. Giulionatti M. Houghten RA. Org. Lett. 2010; 12: 2250
    • 4e Agrigento P. Albericio F. Chamoin S. Dacquignies I. Koc H. Eberle M. Org. Lett. 2014; 16: 3922
    • 5a Dawson PE. Muir TW. Clark-Lewis I. Kent SB. H. Science 1994; 266: 776
    • 5b Sun Y. Lu G. Tam JP. Org. Lett. 2001; 3: 1681
    • 5c Clark RJ. Craik DJ. Biopolymers 2010; 94: 414
    • 5d Boll E. Dheur J. Drobecq H. Melnyk O. Org. Lett. 2012; 14: 2222
    • 5e Taichi M. Hemu X. Qiu Y. Tam JP. Org. Lett. 2013; 15: 2620
    • 5f Wang J.-X. Fang G.-M. Qu D.-L. Yu M. Hong Z.-Y. Liu L. Angew. Chem. Int. Ed. 2015; 54: 2194
    • 6a Yan LZ. Dawson PE. J. Am. Chem. Soc. 2001; 123: 526
    • 6b Zheng JS. Tang S. Guo Y. Chang HN. Liu L. ChemBioChem. 2012; 13: 542
    • 7a Malins LR. Payne RJ. Aust. J. Chem. 2015; 68: 521
    • 7b Rohde H. Seitz O. Biopolymers 2010; 94: 551
    • 8a Payne RJ. Ficht S. Greenberg WA. Wong C.-H. Angew. Chem. Int. Ed. 2008; 47: 4411
    • 8b Thomas GL. Hsieh YS. Y. Chun CK. Y. Cai Z.-L. Reimers JR. Payne RJ. Org. Lett. 2011; 13: 4770
  • 9 Sato K. Shigenaga A. Tsuji K. Tsuda S. Sumikawa Y. Sakamoto K. Otaka A. ChemBioChem. 2011; 12: 1840
  • 10 Sudek S. Haygood MG. Youssef DT. A. Schmidt EW. Appl. Environ. Microbiol. 2006; 72: 4382
    • 11a Cowper B. Sze TM. Premdjee B. Bongat White AF. Hacking A. Macmillan D. Chem. Commun. 2015; 51: 3208
    • 11b Eto M. Naruse N. Morimoto K. Yamaoka K. Sato K. Tsuji K. Inokuma T. Shigenaga A. Otaka A. Org. Lett. 2016; 18: 4416
    • 12a Just-Baringo X. Albericio F. Álvarez M. Curr. Top. Med. Chem. 2014; 14: 1244
    • 12b Bruno P. Peña S. Just-Baringo X. Albericio F. Álvarez M. Org. Lett. 2011; 13: 4648
    • 12c Pan C.-M. Lin C.-C. Kim SJ. Sellers RP. McAlpine SR. Tetrahedron Lett. 2012; 53: 4065
    • 12d Wahyudi H. Tantisantisom W. Liu X. Ramsey DM. Singh EK. McAlpine SR. J. Org. Chem. 2012; 77: 10596
    • 13a Crawhall JC. Elliott DF. Biochem. J. 1951; 48: 237
    • 13b Demarchi B. Collins M. Bergström E. Dowle A. Penkman K. Thomas-Oates J. Wilson J. Anal. Chem. 2013; 85: 5835
  • 14 Amaike K. Itami K. Yamaguchi J. Chem. Eur. J. 2016; 22: 4384 ; the applicability of the reaction conditions (50 °C) mentioned in the literature to racemization-prone thioamides remains unclear at present
  • 15 Nicolaou KC. Estrada AA. Zak M. Lee SH. Safina BS. Angew. Chem. Int. Ed. 2005; 44: 1378
  • 16 SEAlide peptide 19 (5.2 mg, 3.0 μmol) was dissolved in 6.0 mL of degassed ligation buffer (NMP/H2O = 4:1 (v/v) containing 20 mM MBPA, 15 mM TCEP·HCl, final pH 7.6), and the reaction mixture was incubated at 37 °C. After 72 h, the mixture was diluted with 0.1% aq TFA, and the product was purified by preparative HPLC to give trichamide 3 as a white lyophilized powder (2.5 mg, 1.9 μmol, 63%). Preparative HPLC Conditions Cosmosil 5C18-AR-II preparative column (20 × 250 mm, flow rate 10.0 mL/min) with a linear gradient of solvent B/solvent A (20:80 to 30:70 over 30 min). Analytical HPLC Conditions Cosmosil 5C18-AR-II analytical column (4.6 × 250 mm, flow rate 1.0 mL/min) with a linear gradient of solvent B/solvent A [10:90 to 55:45 over 30 min (curve 7 of the Waters 600E)], t R = 22.4 min. HRMS (ESI-TOF): m/z calcd for C46H66N16O12S2 [M + H]+: 1099.4566; found: 1099.4569.