Synlett 2017; 28(12): 1481-1485
DOI: 10.1055/s-0036-1588990
letter
© Georg Thieme Verlag Stuttgart · New York

Metal-Free Oxidative C=C Bond Cleavage of Electron-Deficient Enamines Promoted by tert-Butyl Hydroperoxide

Mehdi Adib*a, Rahim Pashazadeha, Seyed Jamal Adin Goharib, Fatemeh Shahsavaric
  • aSchool of Chemistry, College of Science, University of Tehran, P. O. Box 14155-6455, Tehran, Iran   Email: madib@khayam.ut.ac.ir
  • bDepartment of Chemistry, Imam Hossein University, Tehran, Iran
  • cNational Petrochemical Company, Petrochemical Research and Technology Company, Tehran, Iran
Further Information

Publication History

Received: 29 November 2016

Accepted after revision: 08 March 2017

Publication Date:
19 April 2017 (eFirst)

Abstract

A novel tert-butyl hydroperoxide (TBHP)-promoted oxidative C=C double-bond cleavage of enamines is described. Heating a solution of an electron-deficient enamine in chlorobenzene at 80 °C in the presence of TBHP for two hours led to cleavage of the C=C bond. This study offers a new strategy to carry out C=O double-bond formation by the use of TBHP.

Supporting Information

 
  • References and Notes

    • 2a Xing D. Guan B. Cai G. Fang Z. Yang L. Shi Z. Org. Lett. 2006; 8: 693
    • 2b Zhang C. Xu Z. Shen T. Wu G. Zhang L. Jiao N. Org. Lett. 2012; 14: 2362
    • 2c Zhang C. Feng P. Jiao N. J. Am. Chem. Soc. 2013; 135: 15257
    • 2d Zhu Y. Yan H. Lu L. Liu D. Rong G. Mao J. J. Org. Chem. 2013; 78: 9898
    • 2e Liang D. He Y. Liu L. Zhu Q. Org. Lett. 2013; 15: 3476
    • 2f Wang Z. Li L. Huang Y. J. Am. Chem. Soc. 2014; 136: 12233
    • 2g Wang L. Sha W. Dai Q. Feng X. Wu W. Peng H. Chen B. Cheng J. Org. Lett. 2014; 16: 2088
    • 2h Wan J.-P. Zhou Y. Cao S. J. Org. Chem. 2014; 79: 9872
    • 3a Khatun N. Banerjee A. Santra SK. Ali W. Patel BK. RSC Adv. 2015; 5: 36461
    • 3b Banerjee A. Santra SK. Khatun N. Ali W. Patel BK. Chem. Commun. 2015; 51: 15422
    • 3c Majji G. Rajamanickam S. Khatun N. Santra SK. Patel BK. J. Org. Chem. 2015; 80: 3440
    • 3d Behera A. Ali W. Guin S. Khatun N. Mohanta PR. Patel BK. RSC Adv. 2015; 5: 33334
    • 3e Ali W. Behera A. Guin S. Patel BK. J. Org. Chem. 2015; 80: 5625
    • 3f Majji G. Guin S. Gogoi A. Rout SK. Patel BK. Chem. Commun. 2013; 49: 3031
    • 3g Li H. Xie J. Xue Q. Cheng Y. Zhu C. Tetrahedron Lett. 2012; 53: 6479
    • 3h Shi E. Shao Y. Chen S. Hu H. Liu Z. Zhang J. Wan X. Org. Lett. 2012; 14: 3384
    • 3i Xue Q. Xie J. Xu P. Hu K. Cheng Y. Zhu C. ACS Catal. 2013; 3: 1365
    • 3j Wu X.-F. Gong J.-L. Qi X. Org. Biomol. Chem. 2014; 12: 5807
    • 3k Siddaraju Y. Lamani M. Prabhu KR. J. Org. Chem. 2014; 79: 3856
    • 3l Siddaraju Y. Prabhu KR. Tetrahedron 2016; 72: 959
    • 3m Lamani M. Prabhu KR. J. Org. Chem. 2011; 76: 7938
    • 3n Rokade BV. Prabhu KR. J. Org. Chem. 2014; 79: 8110
    • 3o Aruri H. Singh U. Sharma S. Gudup S. Bhogal M. Kumar S. Singh D. Gupta VK. Kant R. Vishwakarma RA. Singh PP. J. Org. Chem. 2015; 80: 1929
    • 3p More NY. Jeganmohan M. Org. Lett. 2015; 17: 3042
    • 4a Miyamoto K. Sei Y. Yamaguchi K. Ochiai M. J. Am. Chem. Soc. 2009; 131: 1382
    • 4b Lin R. Chen F. Jiao N. Org. Lett. 2012; 14: 4158
    • 4c Wang T. Jiao N. J. Am. Chem. Soc. 2013; 135: 11692
    • 4d Liu L. Du L. Zhang-Negrerie D. Du Y. Zhao K. Org. Lett. 2014; 16: 5772
    • 4e Park S. Jeon WH. Yong W.-S. Lee PH. Org. Lett. 2015; 17: 5060
    • 5a Shi Z. Zhang C. Li S. Pan D. Ding S. Cui Y. Jiao N. Angew. Chem. Int. Ed. 2009; 48: 4572
    • 5b Bernini R. Fabrizi G. Sferrazza A. Cacchi S. Angew. Chem. Int. Ed. 2009; 48: 8078
    • 5c Matsumoto S. Mori T. Akazome M. Synthesis 2010; 3615
    • 5d Wang Y. Jiang C.-M. Li H.-L. He F.-S. Luo X. Deng W.-P. J. Org. Chem. 2016; 81: 8653
    • 5e Sun J. Xia E.-Y. Wu Q. Yan C.-G. Org. Lett. 2010; 12: 3678
    • 5f Thorwirth R. Stolle A. Synlett 2011; 2200
    • 5g Yuan Y. Hou W. Zhang-Negrerie D. Zhao K. Du Y. Org. Lett. 2014; 16: 5410
    • 5h Huang F. Wu P. Wang L. Chen J. Sun C. Yu Z. J. Org. Chem. 2014; 79: 10553
    • 5i Ramanathan D. Pitchumani K. Eur. J. Org. Chem. 2015; 463
    • 5j O’Brien M. Cooper D. Synlett 2016; 27: 164
    • 5k Wu Y. Wang S. Zhang L. Yang G. Zhu X. Zhou Z. Zhu H. Wu S. Eur. J. Org. Chem. 2010; 326
    • 5l Lim DS. W. Lew TT. S. Zhang Y. Org. Lett. 2015; 17: 6054
    • 5m Liu X. Cheng R. Zhao F. Zhang-Negrerie D. Du Y. Zhao K. Org. Lett. 2012; 14: 5480
    • 5n Srivastava VP. Yadav AK. Yadav LD. S. Synlett 2014; 25: 665
    • 5o Nair V. Sheeba V. J. Org. Chem. 1999; 64: 6898
    • 5p Rogness DC. Larock RC. J. Org. Chem. 2016; 76: 4980
    • 5q Zhu X.-H. Zhang X. Xin H.-X. Yan H. Helv. Chim. Acta 2013; 96: 1542
    • 5r Chakraborty K. Devakumar C. Tomar SM. S. Kumar R. J. Agric. Food Chem. 2003; 51: 992
    • 5s Wang Y. Zhu D. Tang L. Wang S. Wang Z. Angew. Chem. Int. Ed. 2011; 50: 8917
    • 5t Evindar G. Batey RA. J. Org. Chem. 2006; 71: 1802
    • 5u Sharma R. Vishwakarma RA. Bharate SB. Adv. Synth. Catal. 2016; 358: 3027
    • 5v Bedford RB. Haddow MF. Mitchell CJ. Webster RL. Angew. Chem. Int. Ed. 2011; 50: 5524
    • 5w Zheng C. Wang Y. Fan R. Org. Lett. 2015; 17: 916
    • 5x Zhang X. Wang M. Zhang Y. Wang L. RSC Adv 2013; 3: 1311
    • 5y Duan X. Kong X. Zhao X. Yang K. Zhou H. Zhou D. Zhang Y. Liu J. Ma J. Liu N. Wang Z. Tetrahedron Lett. 2016; 57: 1446
  • 6 Li J. Cai S. Chen J. Zhao Y. Wang DZ. Synlett 2014; 25: 1626
  • 7 Wan J.-P. Zhou Y. Liu Y. Sheng S. Green Chem. 2016; 18: 402
    • 8a Adib M. Soheilizad M. Rajai-Daryasarei S. Mirzaei P. Synlett 2015; 26: 1101
    • 8b Adib M. Soheilizad M. Zhu L.-G. Wu J. Synlett 2015; 26: 177
    • 8c Adib M. Sheikhi E. Azimzadeh M. Tetrahedron Lett. 2015; 56: 1933
    • 8d Adib M. Bayanati M. Soheilizad M. Janatian Ghazvini H. Tajbakhsh M. Amanlou M. Synlett 2014; 25: 2918
    • 8e Adib M. Sheikhi E. Haghshenas P. Rajai-Daryasarei S. Bijanzadeh HR. Zhu L.-G. Tetrahedron Lett. 2014; 55: 4983
    • 8f Adib M. Sheikhi E. Rezaei N. Bijanzadeh HR. Mirzaei P. Synlett 2014; 25: 1331
    • 9a Adib M. Pashazadeh R. Rajai-Daryasarei S. Kabiri R. Gohari SJ. A. Synlett 2016; 27: 2241
    • 9b Adib M. Pashazadeh R. Rajai-Daryasarei S. Mirzaei P. Gohari SJ. A. Tetrahedron Lett. 2016; 57: 3071
    • 9c Adib M. Rajai-Daryasarei S. Pashazadeh R. Tajik M. Mirzaei P. Tetrahedron Lett. 2016; 57: 3701
    • 9d Adib M. Pashazadeh R. Rajai-Daryasarei S. Kabiri R. Jahani M. RSC Adv. 2016; 6: 110656
  • 10 Yu W. Du Y. Zhao K. Org. Lett. 2009; 11: 2417
  • 11 Jia Z. Nagano T. Li X. Chan AS. C. Eur. J. Org. Chem. 2013; 858
  • 12 Würtz S. Rakshit S. Neumann JJ. Dröge T. Glorius F. Angew. Chem. Int. Ed. 2008; 47: 7230
  • 13 Methyl N-phenyloxamate (2a); Typical Procedure In a round-bottomed flask, a mixture of dimethyl 2-(phenylamino)maleate (1a; 0.094 g, 0.4 mmol), 70% aq TBHP (0.131 g, 1 mmol), and PhCl (1 mL) was heated in an oil bath at 80 °C for 2 h. When the reaction was complete (TLC), the mixture was cooled to r.t. and the reaction was quenched with sat. aq Na2SO3 (1 mL). The mixture was extracted with EtOAc, and the organic phase was dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue was purified by column chromatography [silica gel, hexane–EtOAc (8:1)] to give a white solid; yield: 0.063 g (88%); mp 111–113 °C. 1H NMR (250.1 MHz, CDCl3): δ = 3.98 (s, 3 H, OCH3), 7.20 (t, J = 7.4 Hz, 1 H, CH), 7.38 (t, J = 7.8 Hz, 2 H, 2 × CH), 7.65 (d, J = 8.1 Hz, 2 H, 2 × CH), 8.72–8.95 (br s, 1 H, NH). 13C NMR (62.5 MHz, CDCl3): δ = 53.5 (OCH3), 119.3 (2 × CH), 125.1 (CH), 128.8 (2 × CH), 135.7 (C), 153.0, 161.0 (2 × C=O). N-(2-Bromo-4-methylphenyl)acetamide (2s) White solid; yield: 0.069 g (76%); mp 116–118 °C. 1H NMR (500.1 MHz, CDCl3): δ = 2.24 (s, 3 H, CH3), 2.31 (s, 3 H, CH3), 7.10 (d, J = 8.3 Hz, 1 H, CH), 7.24 (s, 1 H, CH), 7.47–7.53 (br s, 1 H, NH), 8.12 (d, J = 8.3 Hz, 1 H, CH). 13C NMR (125.8 MHz, CDCl3): δ = 20.7 (CH3), 25.0 (CH3), 119.2 (C), 122.1 (CH), 129.2 (CH), 132.6 (CH), 133.3 (C), 135.5 (C) 168.3 (C=O).
    • 14a Fujita S. Steenken S. J. Am. Chem. Soc. 1981; 103: 2540
    • 14b Llano J. Eriksson LA. J. Phys. Chem. B 1999; 103: 5598
    • 14c Domingo RL. Pérez P. Org. Biomol. Chem. 2013; 11: 4350
    • 15a Liu W. Li Y. Liu K. Li Z. J. Am. Chem. Soc. 2011; 133: 10756
    • 15b Schweitzer-Chaput B. Demaerel J. Engler H. Klussmann M. Angew. Chem. Int. Ed. 2014; 53: 8737
    • 15c Liu K. Li Y. Zheng X. Liu W. Li Z. Tetrahedron 2012; 68: 10333
    • 15d Zong Z. Lu S. Wang W. Li Z. Tetrahedron Lett. 2015; 56: 6719
    • 15e Yang W.-C. Weng S.-S. Ramasamy A. Rajeshwaren G. Liao Y.-Y. Chen C.-T. Org. Biomol. Chem. 2015; 13: 2385
    • 15f Banerjee A. Santra SK. Mishra A. Khatun N. Patel BK. Org. Biomol. Chem. 2015; 13: 1307
    • 15g Xia X.-F. Zhu S.-L. Niu Y.-N. Zhang D. Liu X. Wang H. Tetrahedron 2016; 72: 3068
    • 16a Barnett G. Can. J. Chem. 1974; 52: 3837
    • 16b Kopecky KR. Filby JE. Mumford C. Lockwood PA. Ding J.-Y. Can. J. Chem. 1975; 53: 1103
    • 16c Meijer EW. Wynberg H. J. Chem. Educ. 1982; 59: 1071
    • 16d Chen Y. Spiering AJ. H. Karthikeyan S. Peters GW. M. Meijer EW. Sijbesma RP. Nat. Chem. 2012; 4: 559
    • 16e Sun H. Yang C. Gao F. Li Z. Xia W. Org. Lett. 2013; 15: 624
    • 16f Fan W. Yang Y. Lei J. Jiang Q. Zhou W. J. Org. Chem. 2015; 80: 8782