Synthesis 2017; 49(14): 3126-3136
DOI: 10.1055/s-0036-1588985
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Orthogonally Protected (±)-3-Amino-4-anilidopiperidines and (±)-3-N-Carbomethoxyfentanyl

Ivana I. Jevtića, Ljiljana I. Došen-Mićovića, Evica R. Ivanovićb, Nina M. Todorovićc, Milovan D. Ivanović*a
  • aFaculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia   Email: misai@chem.bg.ac.rs
  • bFaculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade-Zemun, Serbia
  • cInstitute of Chemistry, Technology and Metallurgy, Center of Chemistry, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
Further Information

Publication History

Received: 03 February 2017

Accepted after revision: 08 March 2017

Publication Date:
03 April 2017 (eFirst)

Abstract

The synthesis of orthogonally protected cis- and trans-3-amino-4-anilidopiperidine derivatives has been accomplished in six steps, starting from readily accessible 4-piperidone derivatives. The last three steps, i.e., N-acylation, Hofmann rearrangement, and carbamate cleavage, involved separated (±)-cis and (±)-trans intermediates. Complete retention of configuration was observed at position 3 of the piperidine ring. Specifically protected positions 1 and 3 at the piperidine scaffold allow for selective deprotection and introduction of diverse substituents at the respective nitrogen sites. The orthogonally protected anilidopiperidines open avenues to potentially pharmacologically active compounds, including opioids and various bivalent ligands for G protein-coupled receptors. In addition, a prototype of a novel class of fentanyl derivatives, possessing a 3-amino group, was synthesized by using the same approach.

Supporting Information

 
  • References

  • 1 Vardanyan RS. Hruby VJ. Future Med. Chem. 2014; 6: 385
    • 2a Deekonda S. Wugalter L. Rankin D. Largent-Milnes TM. Davis P. Wang Y. Bassirirad NM. Lai J. Kulkarni V. Vanderah TW. Porreca F. Hruby VJ. Bioorg. Med. Chem. Lett. 2015; 25: 4683
    • 2b Deekonda S. Wugalter L. Kulkarni V. Rankin D. Largent-Milnes TM. Davis P. Bassirirad NM. Lai J. Vanderah TW. Porreca F. Hruby VJ. Bioorg. Med. Chem. 2015; 23: 6185
    • 2c Marton J. Glaenzel B. Roessler J. Golaszewski D. Henriksen G. Molecules 2012; 17: 2823
  • 3 O’Neil MJ. Smith A. Heckelmann PE. The Merck Index . 13th ed. Merck & Co., Inc.; Whitehouse Station; 2001
  • 4 http://wildpharm.com/medications/wildlife/item/35-carfentanil-citrate-cii-10ml-3mgml.html; accessed 28 March 2017.
  • 5 Vučković S. Prostran M. Ivanović M. Došen-Mićović Lj. Todorović Z. Nešić Z. Stojanović R. Divac N. Miković Z. Curr. Med. Chem. 2009; 16: 2468
  • 6 Bagley JR. Kudzma LV. Lalinde NL. Colapret JA. Huang B.-S. Lin BS. Jerussi TP. Benvenga MJ. Doorley BM. Med. Res. Rev. 1991; 11: 403
  • 7 Van Bever WF. M. Niemegeers CJ. E. Janssen PA. J. J. Med. Chem. 1974; 17: 1047
  • 8 Ivanović MD. Mićović IV. Vučković S. Prostran M. Todorovic Z. Kiricojevic VD. Djordjevic JB. Dosen-Micovic LJ. J. Serb. Chem. Soc. 2004; 69: 511
    • 9a Μićοvίć IV. Ivanović MD. Vučković S. Jovanović-Mićić D. Beleslin D. Došen-Mićović Lj. Kiricojević VD. Heterocycl. Commun. 1998; 4: 171
    • 9b Although compounds 11b, cis-12b and trans-12b are known, there are no published experimental spectral data in the literature.
  • 10 Vučković S. Prostran M. Ivanović M. Ristović Z. Stojanović R. Jpn. J. Pharmacol. 2000; 84: 188
  • 11 Feldman PL. Brackeen MF. (Glaxo Inc., Research Triangle Park N.C. USA) US Patent US5130321A, 1992
  • 12 Scheunemann M. Hennig L. Funke U. Steinbach J. Tetrahedron 2011; 67: 3448
  • 13 Lalinde N. Moliterni J. Spencer HK. (A. BOC. Inc., New Providence N.J. USA) US Patent US4994471, 1991
  • 14 Stein C. Weber M. Zoellner C. Scharkoi O. (Charite-Universitaetsmedizin Berlin, Germany) Patent WO2013026787 A1, 2013
  • 15 Zhao S. Ghosh A. D’Andrea S. Freeman JP. VonVoigtlander PF. Carter DB. Smith MW. Blinn JR. Szmuszkovicz J. Heterocycles 1994; 163
    • 16a Kiss L. Kazi B. Forró E. Fülöp F. Tetrahedron Lett. 2008; 49: 339
    • 16b Kiss L. Fülöp F. Chem. Rev. 2014; 114: 1116
    • 16c Würdemann M. Christoffers J. Eur. J. Org. Chem. 2013; 7421 ; and references 6–9 cited therein
  • 17 Popović-Djordjević J. Stepanović S. Došen-Mićović Lj. Ivanović E. Ivanović MD. Green Chem. Lett. Rev. 2016; 9: 61
    • 18a Olofson RA. Abbott DE. J. Org. Chem. 1984; 49: 2795
    • 18b Deekonda S. Wugalter L. Kulkarni V. Rankin D. Largent-Milnes TM. Davis P. Bassirirad NM. Lai JT. Vanderah W. Porreca F. Hruby VJ. Bioorg. Med. Chem. 2015; 23: 6185
  • 19 Bull SD. Davies SG. Fenton G. Mulvaney AW. Prasad RS. Smith AD. J. Chem. Soc., Perkin Trans. 1 2000; 3765
  • 20 Zhang Y. Zhang K. Zhao M. Zhang L. Qin M. Guo S. Zhao Y. Gong P. Bioorg. Med. Chem. 2015; 23: 4591
  • 21 Wuts GM. Greene TW. In Greene’s Protective Groups in Organic Synthesis . 4th ed. John Wiley & Sons, Inc; Hoboken; 2006: Chap. 7
  • 22 El-Faham A. Albericio F. Chem. Rev. 2011; 111: 6557
    • 23a Giubellina N. Stabile P. Laval G. Perboni AD. Cimarosti Z. Westerduin P. Cooke JW. B. Org. Process Res. Dev. 2010; 14: 859
    • 23b Abrecht S. Adam J.-M. Bromberger U. Diodone R. Fettes A. Fischer R. Goeckel V. Hildbrand S. Moine G. Weber M. Org. Process Res. Dev. 2011; 15: 503
    • 23c Ramirez A. Mudryk B. Rossano L. Tummala S. J. Org. Chem. 2012; 77: 775
  • 24 Jevtić II. Došen-Mićović Lj. Ivanović E. Ivanović MD. Synthesis 2016; 48: 1550
    • 25a Huang X. Keillor JW. Tetrahedron Lett. 1997; 38: 313
    • 25b Keillor JW. Huang X. Org. Synth. 2002; 78: 234
    • 25c Hakogi T. Monden Y. Iwama S. Katsumura S. Org. Lett. 2000; 2: 2627
    • 25d Yoshimura A. Luedtke MW. Zhdankin VV. J. Org. Chem. 2012; 77: 2087
    • 25e Kimishima A. Umihara H. Mizoguchi A. Yokoshima S. Fukuyama T. Org. Lett. 2014; 16: 6244
    • 25f Abrecht S. Adam J. Bromberger U. Diodone R. Fettes A. Fischer R. Goeckel V. Hildbrand S. Moine G. Weber M. Org. Process Res. Dev. 2011; 15: 503
  • 26 Jung ME. Martinelli MJ. Iodotrimethylsilane . In e-EROS Encyclopedia of Reagents for Organic Synthesis . John Wiley & Sons, Inc; Hoboken; 2005
  • 28 Oliveto EP. Gerold C. Org. Synth. 1951; 31: 17
    • 29a The given NMR spectra of compounds cis-16a, trans-16a, cis-16b, and trans-16b were recorded at 75 °C because of extensive rotamery isomerism, which made spectra recorded at lower temperatures more complex.
    • 29b 2D spectra of cis-16b and trans-16b were not recorded because the compounds showed analogous 1D spectra compared with those of cis-16a and trans-16a.