Synthesis 2017; 49(12): 2749-2752
DOI: 10.1055/s-0036-1588977
paper
© Georg Thieme Verlag Stuttgart · New York

Rhodium-Catalysed Hydroboration of Terminal Alkynes Using Pinacolborane Promoted by Tri(2-furyl)phosphine

Kongchen Wang
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore   Email: roderick@ntu.edu.sg
,
Roderick W. Bates*
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore   Email: roderick@ntu.edu.sg
› Author Affiliations
Further Information

Publication History

Received: 12 January 2017

Accepted after revision: 28 February 2017

Publication Date:
27 March 2017 (online)


Abstract

Tri(2-furyl)phosphine is a superior ligand to triphenylphosphine in the rhodium-catalysed hydroboration of alkynes with pinacolborane to yield alkenylboronates. In general the reactions are faster and the products are cleaner.

Supporting Information

 
  • References

  • 1 Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457-2457
  • 2 See, for instance: Batey RA, MacKay DB, Santhakumar V. J. Am. Chem. Soc. 1999; 121: 5075-5075
  • 3 Barbeyron R, Benedetti E, Cossy J, Vasseur J.-J, Arseniyadis S, Smietana M. Tetrahedron 2014; 70: 8431-8431
  • 4 Pereira S, Srebnik M. Tetrahedron Lett. 1996; 37: 3283-3283 ; a reaction time of 3 h was reported for rhodium catalysis
  • 5 Beletskaya I, Pelter A. Tetrahedron 1997; 53: 4957-4957
  • 6 Trost BM, Ball ZT. Synthesis 2005; 853-853
  • 7 Woods WG, Strong PL. J. Am. Chem. Soc. 1966; 88: 4667-4667
  • 8 Tucker CE, Davidson J, Knochel P. J. Org. Chem. 1992; 57: 3482-3482
  • 9 McCleverty JA, Wilkinson G, Lipson LG, Maddox ML, Kaesz HD. Inorg. Synth. 1966; 8: 214-214
  • 10 Use of this ligand in the presence of an amine base has been reported to result in trans-hydroboration: Ohmura T, Yamamoto Y, Miyaura N. J. Am. Chem. Soc. 2000; 122: 4990-4990
  • 11 Farina V, Krishnan B. J. Am. Chem. Soc. 1991; 113: 9585-9585
  • 12 Männig D, Nöth H. Angew. Chem., Int. Ed. Engl. 1985; 24: 878-878
  • 13 Rhodium–NHC complexes have been reported to give mixtures of all possible isomers: Khramov DM, Rosen EL, Er JA. V, Vu PD, Lynch VM, Bielawski CW. Tetrahedron 2008; 64: 6853-6853
  • 14 The structure was confirmed by X-ray crystallography. CCDC 1501278 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 15 Heng R, Koch G, Schlapbach A, Seiler MP. WO 2008034600, 2008
  • 16 Prepared from (±)-citronellal by the method of: Fürstner A, Bouchez LC, Funel J.-A, Liepins V, Poré F.-H, Gilmour R, Beaufils F, Laurich D, Tamiya M. Angew. Chem. Int. Ed. 2007; 46: 9265-9265
  • 17 Ojha DP, Prabhu KR. Org. Lett. 2016; 18: 432-432
  • 18 Kyung SY, Cheol HY, Kyung WJ. J. Am. Chem. Soc. 2006; 128: 16384-16384
  • 19 Tanaka K, Ohashi W, Okada H, Chujo Y. Tetrahedron Lett. 2014; 55: 1635-1635
  • 20 Morrill C, Grubbs RH. J. Org. Chem. 2003; 68: 6031-6031