Synlett 2017; 28(03): 347-352
DOI: 10.1055/s-0036-1588891
letter
© Georg Thieme Verlag Stuttgart · New York

Magnetic Core-Shell Fe3O4@C-SO3H as an Efficient and Renewable ‘Green Catalyst’ for the Synthesis of O-2,3-Unsaturated Glycopyranosides

Guosheng Sun
a  School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: [email protected]
,
Saifeng Qiu
a  School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: [email protected]
,
Zekun Ding
a  School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: [email protected]
,
Heshan Chen
a  School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: [email protected]
,
Jiafen Zhou
a  School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: [email protected]
,
Zhongfu Wang
b  School of Life Sciences, Northwest University, Xi’an, 710069, P. R. of China
,
Jianbo Zhang*
a  School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. of China   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 23 July 2016

Accepted after revision: 06 September 2016

Publication Date:
06 October 2016 (online)


Abstract

A magnetic core-shell solid-acid catalyst Fe3O4@C-SO3H was studied for synthesis of O-2,3-unsaturated glycosides through Ferrier rearrangement. The donors include 3,4,6-tri-O-acetyl-d-glucal and 3,4-di-O-acetyl-l-rhamnal. The acceptors consist of primary alcohols, secondary alcohols, tert-butanol, unsaturated alcohols, halogenated alcohol, sterol, sugars, and phenols. O-2,3-Unsaturated glycosides were obtained rapidly (<3 h) and efficiently (up to 98%) in good α selectivity (α/β >5:1 to 19:1). Moreover, the catalyst can be easily separated from the reaction with an external magnetic force and reused for a minimum of five times without any significant decrease in the yields of the products after every recycle, suggesting it a promising green catalyst in 2,3-unsaturated glycosides syntheses.

Supporting Information

 
  • References and Notes

    • 1a Durham TB, Miller MJ. Org. Lett. 2002; 4: 135
    • 1b Williams DR, Heidebrecht RW. Jr. J. Am. Chem. Soc. 2003; 125: 1843
    • 1c Domon D, Fujiwara K, Ohtaniuchi Y, Takezawa A, Takeda S, Kawasaki H, Murai A, Kawai H, Suzuki T. Tetrahedron Lett. 2005; 46: 8279
    • 1d Panarese JD, Waters SP. Org. Lett. 2009; 11: 5086
    • 1e Rusin A, Zawisza-Puchalka J, Kujawa K, Gogler-Piglowska A, Wietrzyk J, Switalska M, Glowala-Kosinska M, Gruca A, Szeja W, Krawczyk Z, Grynkiewicz G. Bioorg. Med. Chem. 2011; 19: 295
    • 1f Bozell JJ, Tice NC, Sanyal N, Thompson D, Kim JM, Vidal S. J. Org. Chem. 2008; 73: 8763
    • 2a Ferrier RJ, Sankey GH. J. Chem. Soc. C 1966; 24: 2345
    • 2b Ferrier RJ, Prasad N. J. Chem. Soc. C 1969; 4: 570
    • 3a Bowles WA, Robins RK. J. Am. Chem. Soc. 1964; 86: 1252
    • 3b Leutzinger EE, Robins RK, Townsend LB. Tetrahedron Lett. 1970; 43: 3751
    • 3c Fuertes M, Garcia-Munoz G, Lora-Tamayo M, Madronero R, Stud M. Tetrahedron Lett. 1968; 38: 4089
    • 3d Leutzinger EE, Robins RK, Townsend LB. Tetrahedron Lett. 1968; 43: 4475
    • 3e Grynkiewicz G, Priebe W, Zamojski A. Carbohydr. Res. 1979; 68: 33
    • 3f Bettadaiah BK, Srinivas P. Tetrahedron Lett. 2003; 44: 7257
    • 3g Balamurugan R, Koppolu SR. Tetrahedron 2009; 65: 8139
    • 4a Zhou J, Zhang B, Yang G, Chen X, Wang Q, Wang Z, Zhang J, Tang J. Synlett 2010; 893
    • 4b Chen P, Li S. Tetrahedron Lett. 2014; 55: 5813
    • 5a Misra AK, Tiwari P, Agnihotri G. Synthesis 2005; 260
    • 5b Rodriguez OM, Colinas PA, Bravo RD. Synlett 2009; 1154
    • 5c Yadav JS, Satyanarayana M, Balanarsaiah E, Raghavendra S. Tetrahedron Lett. 2006; 47: 6095
    • 5d Rafiee E, Eavani S, Joshaghani M. J. Carbohydr. Chem. 2010; 29: 20
    • 5e Tian Q, Zhu X.-M, Yang J.-S. Synth. Commun. 2007; 37: 691
    • 5f Gorityala BK, Lorpitthaya R, Bai Y, Liu X.-W. Tetrahedron 2009; 65: 5844
    • 6a Zhou JF, Chen X, Wang QB, Zhang B, Zhang LY, Yusulf A, Wang ZF, Zhang JB, Tang J. Chin. Chem. Lett. 2010; 21: 922
    • 6b Zhou J, Chen H, Shan J, Li J, Yang G, Chen X, Xin K, Zhang J, Tang J. J. Carbohydr. Chem. 2014; 33: 313
    • 7a Sun X, Li Y. Angew. Chem. Int. Ed. 2004; 43: 597
    • 7b Zhang W.-M, Wu X.-L, Hu J.-S, Guo Y.-G, Wan L.-J. Adv. Funct. Mater. 2008; 18: 3941
    • 7c Meng J, Shi C, Wei B, Yu W, Deng C, Zhang X. J. Chromatogr. A 2011; 1218: 2841
    • 7d Zheng J, Liu ZQ, Zhao XS, Liu M, Liu X, Chu W. Nanotechnology 2012; 23: 165601
    • 7e Zhu M, Diao G. J. Phys. Chem. C 2011; 115: 24743
    • 7f Ye Y, Zhang H, Chen Y, Deng P, Huang Z, Liu L, Qian Y, Li Y, Li Q. J. Alloys Compd. 2015; 639: 422
  • 8 Zhang Q, Meng G, Wu J, Li D, Liu Z. Opt. Mater. 2015; 46: 52
    • 9a Toda M, Takagaki A, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M. Nature (London, U.K.) 2005; 438: 178
    • 9b Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S, Hara M. J. Am. Chem. Soc. 2008; 130: 12787
    • 9c Ngaosuwan K, Goodwin JG. Jr, Prasertdham P. Renewable Energy 2016; 86: 262
    • 9d Konwar LJ, Boro J, Deka D. Renewable Sustainable Energy Rev. 2014; 29: 546
  • 10 Zhang C, Wang H, Liu F, Wang L, He H. Cellulose 2013; 20: 127
  • 11 Thombal RS, Jadhav VH. RSC Adv. 2016; 6: 30846
  • 12 Noshita TS. T, Kitazumi Y, Oritani T. Biosci. Biotechnol. Biochem. 1995; 59: 8259
  • 13 Chen H, Xian T, Zhang W, Si W, Luo X, Zhang B, Zhang M, Wang Z, Zhang J. Carbohydr. Res. 2016; 431: 42
  • 14 Srinivas B, Narasimha G, Krishna PR, Kashyap S. Synthesis 2014; 46: 1191
    • 15a Frappa I, Sinou D. Synth. Commun. 1995; 25: 2941
    • 15b Yadav JS, Subba Reddy BV, Reddy JS. S. J. Chem. Soc., Perkin Trans. 1 2002; 2390
    • 15c Rosati O, Curini M, Messina F, Marcotullio MC, Cravotto G. Catal. Lett. 2013; 143: 169
  • 16 Typical Experimental Procedure To a mixture of tri-O-acetyl-d-glucal (0.2 mmol, 54.4 mg), benzyl alcohol (26 μL, 0.24 mmol), and Fe3O4@C-SO3H (30 mol%, 25 mg) in a round-bottom flask (10 mL), DCE (2 mL) was added, and the reaction mixture was stirred for 10 min at 80 °C. After completion of the reaction (monitored by TLC), the catalyst is separated from the reaction with an external magnetic force, and the catalyst was washed with CH2Cl2. The organic phase was combined and condensed under vacuum to get the crude product, which was purified by silica gel column chromatography PE–EtOAc = 6:1) to get 3a in 96% yield. All compounds were fully characterized by NMR spectroscopy and MS. Spectral and analytical data were in good agreement with the desired structures.
  • 17 Selected Spectral Data Benzyl 4,6-Di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside (3a) Colorless oil. 1H NMR (500 MHz, CDCl3): δ = 7.40–7.33 (m, 5 H), 5.90 (d, J = 10.4 Hz, 1 H), 5.85 (dt, J = 10.2, 2.3 Hz, 1 H), 5.33 (dd, J = 9.4, 1.2 Hz, 1 H), 5.14 (s, 1 H), 4.81 (d, J = 11.7 Hz, 1 H), 4.69 (s, 1 H), 4.60 (d, J = 11.7 Hz, 1 H), 4.25 (dd, J = 11.6, 5.0 Hz, 1 H), 4.14–4.10 (m, 1 H), 2.08 (s, 3 H), 2.07 (s, 3 H) ppm. ESI-MS: m/z calcd for C17H20O6Na [M + Na]+: 343.12; found: 343.15. Trichloroethyl 4,6-Di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyran-oside (3e) Colorless oil. 1H NMR (500 MHz, CDCl3): δ = 6.00 (d, J = 10.3 Hz, 1 H), 5.97–5.92 (m, 1 H), 5.36 (d, J = 9.2 Hz, 1 H), 5.30 (s, 1 H), 4.35 (d, J = 11.3 Hz, 1 H), 4.26–4.19 (m, 4 H), 2.11 (s, 3 H), 2.11 (s, 3 H) ppm. ESI-MS: m/z calcd for C12H15Cl3O6Na [M + Na]+: 382.98; found: 382.94. tert-Butyl 4,6-Di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside (3h) Colorless oil. 1H NMR (500 MHz, CDCl3): δ = 5.85 (d, J = 10.1 Hz, 1 H), 5.78–5.71 (m, 1 H), 5.32 (s, 1 H), 5.30–5.24 (m, 1 H), 4.26–4.18 (m, 2 H), 4.17–4.12 (m, 1 H), 2.08 (s, 3 H), 2.08 (s, 3 H),1.29 (d, J = 2.6 Hz, 9 H) ppm. ESI-MS: m/z calcd for C14H22O6Na [M + Na]+: 309.13; found: 309.17. Phenoxyl 4,6-Di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside (3m) Colorless oil. 1H NMR (500 MHz, CDCl3): δ = 7.05–7.34 (m, 5 H), 6.02–6.07 (m, 2 H), 5.73 (s, 1 H), 5.41–5.43 (dd, J = 9.5, 1.5 Hz, 1 H), 4.16–4.33 (m, 3 H), 2.14 (s, 3 H), 2.01 (s, 3 H) ppm. ESI-MS: m/z calcd for C16H18O6Na [M + Na]+: 329.10; found: 329.17.