Synlett 2017; 28(11): 1272-1277
DOI: 10.1055/s-0036-1588847
cluster
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Enantioselective Brønsted Base Organocatalytic Reactions

Bo Teng
Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore   Email: choonhong@ntu.edu.sg
,
Wei Chun Lim
Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore   Email: choonhong@ntu.edu.sg
,
Choon-Hong Tan*
Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore   Email: choonhong@ntu.edu.sg
› Author Affiliations
Further Information

Publication History

Received: 22 March 2017

Accepted after revision: 02 May 2017

Publication Date:
23 May 2017 (online)


Abstract

Enantioselective Brønsted base catalyzed reactions have established themselves as powerful tools for the construction of optically pure compounds. Most strategies aim at improving these reactions involve the modification of substrates to decrease the pK a of the acidic proton. Typically, an electron-withdrawing group such as an ester or a fluorine is placed at the α-carbon, where the proton is also residing. The activation of less active proton, thus, becomes a major challenge in this field of research. In order to overcome this pK a barrier, some new innovative approaches have been demonstrated in recent years. The implementation of dual activation modes and the development of organocatalytic Brønsted superbases are selected to be discussed in this minireview.

1 Introduction

2 Dual Activation Using Lewis Acid and Brønsted Base

3 Dual Activation Using Iminium Catalyst and Brønsted Base

4 Chiral Brønsted Superbase

5 Chiral Ion-Pair Brønsted Base

6 Summary and Outlook

 
  • References


    • Reviews of phase-transfer catalysis:
    • 2a Ooi T. Maruoka K. Angew. Chem. Int. Ed. 2007; 46: 4222
    • 2b Shirakawa S. Maruoka K. Angew. Chem. Int. Ed. 2013; 52: 4312

      Reviews of ion-pair catalysis and chiral lithium amide:
    • 3a Brak K. Jacobsen E. Angew. Chem. Int. Ed. 2013; 52: 534
    • 3b Collum D. McNeil A. Ramirez A. Angew. Chem. Int. Ed. 2007; 4: 3002
    • 3c O’Brien P. J. Chem. Soc., Perkin Trans. 1 1998; 1439
  • 4 Reviews of chiral alkaline earth metal catalyst: Kobayashi S. Yamashita Y. Tsubogo T. Chem. Sci. 2012; 3: 967

    • Reviews of multimetallic system:
    • 5a Kumagai N. Shibasaki M. Bull. Chem. Soc. Jpn. 2015; 88: 503
    • 5b Shibasaki M. Kanai M. Matsunaga S. Kumagai N. Acc. Chem. Res. 2009; 42: 1117
    • 5c Shibasaki M. Yoshikawa N. Chem. Rev. 2002; 102: 2187

      Reviews on the use of a combination of Lewis acid and Brønsted base:
    • 6a Trost B. Bartlett M. Acc. Chem. Res. 2015; 48: 688
    • 6b Kobayashi S. Yamashita Y. Tsubogo T. Chem. Eur. J. 2013; 19: 9420
  • 7 Morita Y. Yamamoto T. Nagai H. Shimizu Y. Kanai M. J. Am. Chem. Soc. 2015; 137: 7075
  • 8 Shang M. Wang X. Koo S. Youn J. Chan J. Yao W. Hastings B. Wasa M. J. Am. Chem. Soc. 2017; 139: 95
  • 9 Lee J. Deng L. J. Am. Chem. Soc. 2012; 134: 18209

    • Reviews of chiral guanidine-catalyzed reaction:
    • 10a Leow D. Tan C. Chem. Asian J. 2009; 4: 488
    • 10b Leow D. Tan C. Synlett 2010; 1589
    • 11a Bandar J. Lambert T. J. Am. Chem. Soc. 2012; 134: 5552
    • 11b Bandar J. Lambert T. J. Am. Chem. Soc. 2013; 135: 11799
    • 11c Bandar J. Sauer G. Wulff W. Lambert T. J. Am. Chem. Soc. 2014; 136: 10700
    • 12a Krawczyk M. Dziegielewski M. Deredas D. Albrecht A. Albrecht Ł. Chem. Eur. J. 2015; 21: 10268
    • 12b Nunez M. Farley A. Dixon D. J. Am. Chem. Soc. 2013; 135: 16348
    • 12c Farley A. Sandford C. Dixon D. J. Am. Chem. Soc. 2015; 137: 15992
    • 12d Robertson G. Farley A. Dixon D. Synlett 2016; 27: 21
    • 12e Yang J. Farley A. Dixon D. Chem. Sci. 2017; 8: 606
    • 13a Uraguchi D. Sakaki S. Ooi T. J. Am. Chem. Soc. 2007; 129: 12392
    • 13b Uraguchi D. Ueki Y. Ooi T. J. Am. Chem. Soc. 2008; 130: 14088
    • 13c Uraguchi D. Ito T. Ooi T. J. Am. Chem. Soc. 2009; 131: 3836
    • 13d Uraguchi D. Ueki Y. Ooi T. Science 2009; 326: 120
    • 13e Uraguchi D. Ito T. Nakiamura S. Ooi T. Chem. Sci. 2010; 1: 488
    • 13f Uraguchi D. Ueki Y. Ooi T. Chem. Sci. 2012; 3: 842
    • 13g Corbett M. Uraguchi D. Ooi T. Johnson J. Angew. Chem. Int. Ed. 2011; 51: 4685
    • 13h Uraguchi D. Yoshioka K. Ueki Y. Ooi T. J. Am. Chem. Soc. 2012; 134: 19370
    • 13i Uraguchi D. Tsutsumi R. Ooi T. J. Am. Chem. Soc. 2013; 135: 8161
    • 13j Uraguchi D. Ueki Y. Sugiyama A. Ooi T. Chem. Sci. 2013; 4: 1308
    • 13k Horwitz M. Tanaka N. Yokosaka T. Uraguchi D. Johnson J. Ooi T. Chem. Sci. 2015; 6: 6086
    • 13l Uraguchi D. Yamada K. Ooi T. Angew. Chem. Int. Ed. 2015; 54: 9954
    • 14a Tekeda T. Terada M. J. Am. Chem. Soc. 2013; 135: 15306
    • 14b Kondoh A. Oishi M. Takeda T. Terada M. Angew. Chem. Int. Ed. 2015; 54: 15836
    • 14c Takeda T. Kondoh A. Terada M. Angew. Chem. Int. Ed. 2016; 55: 4734
    • 15a Suzuki H. Sato I. Yamashita Y. Kobayashi S. J. Am. Chem. Soc. 2015; 137: 4336
    • 15b Yamashita Y. Sato I. Suzuki H. Kobayashi S. Chem. Asian J. 2015; 10: 2143
    • 15c Sato I. Suzuki H. Yamashita Y. Kobayashi S. Org. Chem. Front. 2016; 3: 1241
  • 16 Teng B. Chen W. Dong S. Kee C. Gandamana D. Zong L. Tan C. J. Am. Chem. Soc. 2016; 138: 9935