Synthesis 2017; 49(14): 3145-3148
DOI: 10.1055/s-0036-1588819
paper
© Georg Thieme Verlag Stuttgart · New York

An Alternative Synthesis of Bipyrenol: A High-Yield Oxidative Coupling Reaction of a Pyrene Derivative with Cu(BF4)2·nH2O

Subas Rajbangshi, Ken-ichi Sugiura*
  • Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachi-Oji, Tokyo 192-0397, Japan   Email: sugiura@porphyrin.jp
Further Information

Publication History

Received: 04 March 2017

Accepted after revision: 02 April 2017

Publication Date:
09 May 2017 (eFirst)

Abstract

An alternative synthesis has been developed with the objective of extending the applications of bipyrenol in mind. The key reaction involves the oxidative coupling of 2-hydroxypyrene menthyl carbonate to afford the corresponding pyrene dimer. In marked contrast to our previous method, i.e., the oxidation of 2-hydroxypyrene, the revised method is a clean and high-yielding reaction. By optimizing the reaction conditions, the yield of the alternative synthesis is increased to 88%.

Supporting Information

 
  • References


    • Reviews:
    • 1a Chen Y. Yekta S. Yudin AK. Chem. Rev. 2003; 103: 3155
    • 1b Pu L. Chem. Rev. 2004; 104: 1687
    • 1c Brunel JM. Chem. Rev. 2005; 105: 1801 update: Chem. Rev. 2007, 107, PR1–PR45, addition/correction: Chem. Rev. 2007, 105, 4233, addition/correction: Chem. Rev. 2008, 105, 1170
    • 1d Zhang X. Yin J. Yoon J. Chem. Rev. 2014; 114: 4918
    • 1e Parmar D. Sugiono E. Raja S. Rueping M. Chem. Rev. 2014; 114: 9047
  • 2 Ioffe IS. Zh. Obshch. Khim. 1933; 3: 524
  • 3 Bell F. Waring DH. J. Chem. Soc. 1949; 1579
  • 4 Karikomi M. Yamada M. Ogawa Y. Houjou H. Seki K. Hiratani K. Haga K. Uyehara T. Tetrahedron Lett. 2005; 46: 5867

    • Reviews:
    • 5a Richardson FS. Riehl JP. Chem. Rev. 1977; 77: 773
    • 5b Steinberg IZ. Annu. Rev. Biophys. Bioeng. 1978; 7: 113
    • 5c Riehl JP. Richardson FS. Chem. Rev. 1986; 86: 1
    • 5d Watanabe K. Akagi K. Sci. Technol. Adv. Mater. 2014; 15: 44203
    • 5e Sanchez-Carnerero EM. Agarrabeitia AR. Moreno F. Maroto BL. Muller G. Ortiz MJ. de la Moya S. Chem. Eur. J. 2015; 13488
  • 6 Hassan K. Yamashita K.-i. Hirabayashi K. Shimizu T. Nakabayashi K. Imai Y. Matsumoto T. Yamano A. Sugiura K.-i. Chem. Lett. 2015; 44: 1607
  • 7 Rudolf P. Ernst P. Alfred R. Ber. Dtsch. Chem. Ges. 1926; 59: 2159
  • 8 Toda F. Tanaka K. Iwata S. J. Org. Chem. 1989; 54: 3007
  • 9 Ji S.-J. Lu J. Zhu X. Yang J. Lang J.-P. Wu L. Synth. Commun. 2002; 32: 3069
    • 10a Bandin M. Casolari S. Cozzi PG. Proni G. Schmohel E. Spada GP. Tagliavini E. Umani-Ronchi A. Eur. J. Org. Chem. 2000; 491
    • 10b Takaishi K. Sue D. Kuwahara S. Harada N. Kawabata T. Tsubaki K. Tetrahedron 2009; 65: 6135
  • 11 Naya S.-i. Hiramoto Y. Teranishi M. Tada H. Chem. Commun. 2015; 51: 17669
  • 12 Tohma H. Morioka H. Takizawa S. Arisawa M. Kita Y. Tetrahedron 2001; 57: 345
  • 13 Chatterjee A. Mallin H. Klehr J. Vallapurackal J. Finke AD. Vera L. Marsh M. Ward TR. Chem. Sci. 2016; 7: 673
  • 14 Yamashita K.-i. Nakamura A. Sugiura K.-i. Chem. Lett. 2015; 44: 303
  • 15 The stoichiometry of this hygroscopic reagent was regarded to be Cu(BF4)2·6H2O as the idealized hexahydrate salt. However, it was too difficult to weigh the reagent accurately because of the high hygroscopicity of commercially available Cu(BF4)2·nH2O.
    • 16a Sugiura K.-i. Mikami S. Iwasaki K. Hino S. Asato E. Sakata Y. J. Mater. Chem. 2000; 10: 315
    • 16b Hossain MA. Akiyama K. Goto K. Sugiura K.-i. ChemistrySelect 2016; 1: 3784
    • 16c Hossain MA. Akiyama K. Sugiura K.-i. ChemistrySelect 2016; 1: 4137
    • 16d Hossain MA. Akiyama K. Sugiura K.-i. ChemistrySelect 2016; 1: 6859
  • 17 Matsuno T. Koyama Y. Hiroto S. Kumar J. Kawai T. Shinokubo H. Chem. Commun. 2015; 51: 4607
  • 18 Dien LX. Yamashita K.-i. Asano MS. Sugiura K.-i. Inorg. Chim. Acta 2015; 432: 103