Synthesis 2017; 49(14): 3118-3125
DOI: 10.1055/s-0036-1588787
paper
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Organocatalytic Michael Addition–Cyclization Cascade of Cyclopentane-1,2-dione with Substituted α,β-Unsaturated Aldehydes

Gert Preegela, Estelle Silma, Sandra Kaabela, b, Ivar Järvinga, Kari Rissanenb, Margus Lopp*a
  • aDepartment of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia   Email: margus.lopp@ttu.ee
  • bUniversity of Jyvaskyla, Department of Chemistry, Nanoscience Center, P.O. Box 35, 40014 Jyvaskyla, Finland
Supported by: The authors thank the following agencies for financial support: Estonian Ministry of Education and Research (IUT 19-32) (IUT 19-9) (IUT 23-7) (PUT 692)
Supported by: Tallinn University of Technology (B25)
Supported by: European Social Fund (DoRa)
Supported by: EU European Regional Development Fund (3.2.0101.08-0017)
Supported by: Centre of Excellence in Molecular Cell Engineering (2014-2020.4.01.15-0013)
Supported by: Academy of Finland (263256) (265328) (292746)
Further Information

Publication History

Received: 07 February 2017

Accepted after revision: 17 March 2017

Publication Date:
18 April 2017 (eFirst)

Abstract

An asymmetric organocatalytic Michael addition–cyclization cascade reaction has been developed using cyclopentane-1,2-dione as a Michael donor and α,β-unsaturated aldehydes as Michael acceptors. Bicyclic hemiacetals were obtained in excellent yields and enantioselectivities. On the basis of the results, a one-pot reaction has been developed to obtain chiral 3-substituted cyclopentane-1,2-diones and substituted dihydropyrans in good yields and excellent enantioselectivity.

Supporting Information

 
  • References

    • 1a Hronec M. Fulajtarová K. Liptaj T. Appl. Catal., A 2012; 437–438: 104
    • 1b Hronec M. Fulajtarová K. Catal. Commun. 2012; 24: 100
    • 1c Zhang G.-S. Zhu M.-M. Zhang Q. Liu Y.-M. He H.-Y. Cao Y. Green Chem. 2016; 18: 2155
    • 1d Yang Y. Du Z. Huang Y. Lu F. Wang F. Gao J. Xu J. Green Chem. 2013; 15: 1932
    • 2a Wrobel J. Cook JM. Synth. Commun. 1980; 10: 333
    • 2b Cussó O. Cianfanelli M. Ribas X. Gebbink RJ. M. K. Costas M. J. Am. Chem. Soc. 2016; 138: 2732
    • 2c Ponaras AA. Tetrahedron Lett. 1980; 21: 4801
    • 3a Yang J. Li N. Li G. Wang W. Wang A. Wang X. Cong Y. Zhang T. Chem. Commun. 2014; 50: 2572
    • 3b Yang J. Li S. Li N. Wang W. Wang A. Zhang T. Cong Y. Wang X. Huber GW. Ind. Eng. Chem. Res. 2015; 54: 11825
  • 4 Antoniotti S. Alezra N. Fernandez X. Dunach E. Flavour Fragrance J. 2004; 19: 373
  • 5 Paju A. Päri M. Selyutina A. Zusinaite E. Merits A. Pehk T. Siirde K. Müürisepp A.-M. Kailas T. Lopp M. Nucleosides, Nucleotides Nucleic Acids 2010; 29: 707
  • 6 Paju A. Kanger T. Pehk T. Eek M. Lopp M. Tetrahedron 2004; 60: 9081
  • 7 Paju A. Kostomarova D. Matkevitš K. Laos M. Pehk T. Kanger T. Lopp M. Tetrahedron 2015; 71: 9313
  • 8 Donslund BS. Johansen TK. Poulsen PH. Halskov KS. Jørgensen KA. Angew. Chem. Int. Ed. 2015; 54: 13860
  • 9 Reile I. Paju A. Kanger T. Järving I. Lopp M. Tetrahedron Lett. 2012; 53: 1476
  • 10 Preegel G. Noole A. Ilmarinen K. Järving I. Kanger T. Pehk T. Lopp M. Synthesis 2014; 46: 2595
  • 11 Preegel G. Ilmarinen K. Järving I. Kanger T. Pehk T. Lopp M. Synthesis 2015; 47: 3805
    • 12a Rueping M. Sugiono E. Merino E. Chem. Eur. J. 2008; 14: 6329
    • 12b Rueping M. Kuenkel A. Tato F. Bats JW. Angew. Chem. Int. Ed. 2009; 48: 3699
  • 13 Franke PT. Richter B. Jørgensen KA. Chem. Eur. J. 2008; 14: 6317
  • 14 Maeda K. Shinokubo H. Oshima K. J. Org. Chem. 1997; 62: 6429