Synlett 2017; 28(11): 1378-1382
DOI: 10.1055/s-0036-1588764
letter
© Georg Thieme Verlag Stuttgart · New York

‘On Water’ Direct Aldol Reaction of Oxindoles with β,γ-Unsaturated α-Keto Esters for the Synthesis of 3-(α-Hydroxy-β-carbonyl)oxindoles

Man-Yi Han*
Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China   Email: [email protected]
,
Ping Pan
Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China   Email: [email protected]
,
Fei-Fei Sheng
Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. of China   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 24 January 2017

Accepted after revision: 05 March 2017

Publication Date:
23 March 2017 (online)


Abstract

An efficient ‘on water’ direct aldol reaction of oxindoles and β,γ-unsaturated α-keto esters was developed, giving 3-(α-hydroxy-β-carbonyl)oxindoles in high yields (up to 92%) and diastereoselectivities (up to >20:1). Compared with organic solvent, water as the solvent was crucial to the reaction and rate acceleration was observed in water.

Supporting Information

 
  • References and Notes

  • 1 Rideout DC. Breslow R. J. Am. Chem. Soc. 1980; 102: 7816

    • For reviews, see:
    • 2a Otto S. Engberts JF. N. Org. Biomol. Chem. 2003; 1: 2809
    • 2b Kobayashi S. Manabe K. Acc. Chem. Res. 2002; 35: 209
    • 2c Lindström UM. Chem. Rev. 2002; 102: 2751
    • 2d Kolb HC. Finn MG. Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 2e Grieco PA. Organic Synthesis in Water . Blackie; London: 1998
    • 2f Li C.-J. Chan T.-H. Organic Reactions in Aqueous Media . Wiley; New York: 1997
  • 3 Narayan S. Muldoon J. Finn MG. Fokin VV. Kolb HC. Sharpless KB. Angew. Chem. Int. Ed. 2005; 44: 3275

    • For selected examples, see:
    • 5a Zhang Y. Wei B.-W. Zou L.-N. Kang M.-L. Luo H.-Q. Fan X.-L. Tetrahedron 2016; 72: 2472
    • 5b Luque-Agudo V. Gil MV. Román E. Serrano JA. Green Chem. 2016; 18: 3844
    • 5c Zhang Y. Wei B.-W. Lin H. Zhang L. Liu J.-X. Luo H.-Q. Fan X.-L. Green Chem. 2015; 17: 3266
    • 5d SaiPrathima P. Srinivas K. Rao MM. Green Chem. 2015; 17: 2339
    • 5e Zhang F.-Z. Tian Y. Li G.-X. Qu J. J. Org. Chem. 2015; 80: 1107
    • 5f Nagaraju S. Satyanarayana N. Paplal B. Vasu AK. Kanvah S. Kashinath D. RSC Adv. 2015; 5: 81768
    • 5g de los Santos JM. Ignacio R. Es Sbai Z. Aparicio D. Palacios F. J. Org. Chem. 2014; 79: 7607
    • 5h Yu J.-S. Liu Y.-L. Tang J. Wang X. Zhou J. Angew. Chem. Int. Ed. 2014; 53: 9512
    • 5i Sengoden M. Punniyamurthy T. Angew. Chem. Int. Ed. 2013; 52: 572
    • 5j Verma AK. Choudhary D. Saunthwal RK. Rustagi V. Patel M. Tiwari RK. J. Org. Chem. 2013; 78: 6657
    • 5k Islam S. Larrosa I. Chem. Eur. J. 2013; 19: 15093
    • 5l Lei Q. Wei Y. Talwar D. Wang C. Xue D. Xiao J. Chem. Eur. J. 2013; 19: 4021
    • 5m Norcott P. Spielman C. McErlean CS. P. Green Chem. 2012; 14: 605
    • 5n Trogu E. Vinattieri C. De Sarlo F. Machetti F. Chem. Eur. J. 2012; 18: 2081
    • 5o Fu X.-P. Liu L. Wang D. Chen Y.-J. Li C.-J. Green Chem. 2011; 13: 549
    • 5p Crespo-Pena A. Martin-Zamora E. Fernandez R. Lassaletta JM. Chem. Asian J. 2011; 6: 2287
    • 5q Krasovskaya V. Krasovskiy A. Bhattacharjya A. Lipshutz BH. Chem. Commun. 2011; 47: 5717
    • 5r Krasovskaya V. Krasovskiy A. Lipshutz BH. Chem. Asian J. 2011; 6: 1974
    • 5s Sakakura A. Koshikari Y. Akakura M. Ishihara K. Org. Lett. 2011; 14: 30
    • 5t Phippen CB. W. Beattie JK. McErlean CS. P. Chem. Commun. 2010; 46: 8234
    • 5u Shapiro N. Vigalok A. Angew. Chem. Int. Ed. 2008; 47: 2849
    • 5v Cozzi PG. Zoli L. Angew. Chem. Int. Ed. 2008; 47: 4162
    • 5w Aplander K. Ding R. Lindström UM. Wennerberg J. Schultz S. Angew. Chem. Int. Ed. 2007; 46: 4543
    • 6a Xu Z. Wang Q. Zhu J. J. Am. Chem. Soc. 2015; 137: 6712
    • 6b Jabri SY. Overman LE. J. Am. Chem. Soc. 2013; 135: 4231
    • 6c Jabri SY. Overman LE. J. Org. Chem. 2013; 78: 8766
    • 7a Han M.-Y. Yang F.-Y. Zhou D. Xu Z. Org. Biomol. Chem. 2017; 15: 1418
    • 7b Han M.-Y. Jia J.-Y. Wang W. Tetrahedron Lett. 2014; 55: 784
    • 7c Han M.-Y. Wang H.-Z. An W.-K. Jia J.-Y. Ma B.-C. Zhang Y. Wang W. Chem. Eur. J. 2013; 19: 8078
    • 7d Han M.-Y. Zhang Y. Wang H.-Z. An W.-K. Ma B.-C. Zhang Y. Wang W. Adv. Synth. Catal. 2012; 354: 2635
    • 8a Paladhi S. Bhati M. Panda D. Dash J. J. Org. Chem. 2014; 79: 1473
    • 8b Thakur PB. Meshram HM. RSC Adv. 2014; 4: 6019
    • 8c Thakur PB. Meshram HM. RSC Adv. 2014; 4: 5343
    • 8d Paladhi S. Chauhan A. Dhara K. Tiwari AK. Dash J. Green Chem. 2012; 14: 2990
  • 9 Typical Procedure for the ‘On Water’ Direct Aldol Reaction of Oxindole with β,γ-Unsaturated α-Keto Ester: A mixture of oxindole (0.1 mmol), β,γ-unsaturated α-keto ester (0.12 mmol), and DABCO (0.02 mmol) in H2O (1 mL) was stirred at room temperature. After stirring for the indicated time, the mixture was extracted with EtOAc. The combined organic phase was dried over Na2SO4 and concentrated in vacuo. The residue was further purified by washing with petroleum ether/EtOAc to afford the desired product 3a. Yield: 76%; white solid; diastereomeric mixture (dr >20:1). 1H NMR (400 MHz, DMSO): δ = 10.38 (s, 1 H), 7.49 (d, J = 0.8 Hz, 2 H), 7.38 (t, J = 0.8 Hz, 2 H), 7.29 (t, J = 0.8 Hz, 1 H), 7.13 (t, J = 0.8 Hz, 2 H), 6.67-6.82 (m, 4 H), 5.79 (s, 1 H), 4.15 (q, J = 0.8 Hz, 2 H), 3.99 (s, 1 H), 1.18 (t, J = 0.8 Hz, 3 H). 13C NMR (100 MHz, DMSO): δ = 175.2, 171.9, 143.6, 136.0, 128.8, 127.8, 126.6, 126.1, 125.3, 120.5, 108.9, 78.6, 61.0, 52.8, 13.8. HRMS (ESI): m/z calcd for [C20H19NO4 + H]+: 338.1392; found: 338.1395.