Synlett 2017; 28(15): 1939-1943
DOI: 10.1055/s-0036-1588744
cluster
© Georg Thieme Verlag Stuttgart · New York

Synthesis of a Ubiquitinated Histone Mimic Bearing a New Thioether Linkage

Qiaoqiao Hea, c, Yunkun Qib, Chao Liuc, Jiabin Li*b, Honggang Hu*c
  • aKey Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, P. R. of China
  • bSchool of Life Sciences, University of Science and Technology of China, Hefei 230027, P. R. of China   Email: ljbchem@163.com
  • cDepartment of Organic Chemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. of China   Email: huhonggang_fox@msn.com
Further Information

Publication History

Received: 17 January 2017

Accepted after revision: 19 February 2017

Publication Date:
09 March 2017 (eFirst)

Published as part of the Cluster Recent Advances in Protein and Peptide Synthesis

Abstract

Current studies on histone ubiquitination require the development of more effective approaches for the preparation of ubiquitinated histones. Here, we report a new approach to obtain ubiquitinated histone mimics by using a thioether linkage. The synthetic ubiquitinated histone mimic is stable under reducing conditions and has the same atom number as the native structure. Biochemical experiments showed that the mimic is a good surrogate for natural ubiquitinated histone.

Supporting Information

 
  • References and Notes

  • 1 Huang H. Sabari BR. Garcia BA. Allis CD. Zhao Y.-M. Cell 2014; 159: 458
    • 2a Zhang Y. Genes Dev. 2003; 17: 2733
    • 2b Weake VM. Workman JL. Mol. Cell. 2008; 29: 653
    • 2c Müller MM. Muir TW. Chem. Rev. 2015; 115: 2296
    • 3a Mattiroli F. Vissers JH. A. van Dijk WJ. Ikpa P. Citterio E. Vermeulen W. Marteijn JA. Sixma TK. Cell 2012; 150: 1182
    • 3b Wilson MD. Benlekbir S. Fradet-Turcotte A. Sherker A. Julien J.-P. McEwan A. Noordermeer SM. Sicheri F. Rubinstein JL. Durocher D. Nature 2016; 536: 100
    • 4a Fierz B. Chatterjee C. McGinty RK. Bar-Dagan M. Raleigh DP. Muir TW. Nat. Chem. Biol. 2011; 7: 113
    • 4b Debelouchina G. Gerecht K. Muir TW. Nat. Chem. Biol. 2017; 13: 105
    • 5a Morgan MT. Haj-Yahya M. Ringel AE. Bandi P. Brik A. Wolberger C. Science 2016; 351: 725
    • 5b Machida S. Sekine S. Nishiyama Y. Horikoshi N. Kurumizaka H. Open Biol. 2016; 6: 160090
    • 5c Li J.-B. He Q.-Q. Liu Y.-T. Liu S.-L. Tang S. Li C.-M. Sun D.-M. Li X.-R. Zhou M. Zhu P. Bi G.-Q. Zhou Z.-H. Zheng J.-S. Tian C.-L. ChemBioChem 2016; 18: 176
    • 6a Kent SB. H. Chem. Soc. Rev. 2009; 38: 338
    • 6b Pattabiraman VR. Bode JW. Nature 2011; 480: 471
    • 6c Zheng J.-S. Tang S. Huang Y.-C. Liu L. Acc. Chem. Res. 2013; 46: 2475
    • 6d Huang YC. Fang GM. Liu L. Nat. Sci. Rev. 2016; 3: 107
    • 6e Bondalapati S. Jbara M. Brik A. Nat. Chem. 2016; 8: 407
    • 7a Siman P. Karthikeyan SV. Nikolov M. Fischle W. Brik A. Angew. Chem. Int. Ed. 2013; 52: 8059
    • 7b Seenaiah M. Jbara M. Mali SM. Brik A. Angew. Chem. Int. Ed. 2015; 54: 12374
    • 8a McGinty RK. Kim J. Chatterjee C. Roeder RG. Muir TW. Nature 2008; 453: 812
    • 8b Kumar KS. A. Spasser L. Ohayon S. Erlich LA. Brik A. Bioconjugate Chem. 2011; 22: 137
    • 8c Haj-Yahya M. Eltarteer N. Ohayon S. Shema E. Kotler E. Oren M. Brik A. Angew. Chem. Int. Ed. 2012; 51: 11535
    • 8d Holt M. Muir T. Annu. Rev. Biochem. 2015; 84: 265
    • 8e Weller CE. Dhall A. Ding F. Linares E. Whedon SD. Senger NA. Tyson EL. Bagert JD. Li X. Augusto O. Chatterjee C. Nat. Commun. 2016; 7: 12979
  • 9 Bi X.-B. Yang R.-L. Feng XY. Rhodes D. Liu C.-F. Org. Biomol. Chem. 2016; 14: 835
  • 10 Dawson PE. Muir TW. Clark-Lewis I. Kent SB. H. Science 1994; 266: 776
    • 11a Chatterjee C. McGinty RK. Fierz B. Muir TW. Nat. Chem. Biol. 2010; 6: 267
    • 11b Whitcomb SJ. Fierz B. McGinty RK. Holt M. Ito T. Muir TW. Allis CD. J. Biol. Chem. 2012; 287: 23718
    • 11c Holt MT. David Y. Pollock S. Tang Z. Jeon J. Kim J. Roeder RG. Muir TW. Proc. Natl. Acad. Sci. U.S.A. 2015; 112: 10365
    • 11d Zhou L. Holt MT. Ohashi N. Zhao A. Müller MM. Wang B. Muir TW. Nat. Commun. 2016; 7: 10589
  • 12 Long L. Furgason M. Yao TT. Methods 2014; 70: 134
    • 13a Simon MD. Chu F. Racki LR. de la Cruz CC. Burlingame AL. Panning B. Narlikar GJ. Shokat KM. Cell 2007; 128: 1003
    • 13b Chatterjee C. Muir TW. J. Biol. Chem. 2010; 285: 11045
    • 13c Dhall A. Chatterjee C. ACS Chem. Biol. 2011; 6: 987
    • 14a Yang R.-L. Bi X.-B. Li FP. Cao Y. Liu C.-F. Chem. Commun. 2014; 50: 7971
    • 14b Li Y.-T. Liang J. Li J.-B. Fang G.-M. Huang Y. Liu L. J. Pept. Sci. 2014; 20: 102
  • 15 Hemantha HP. Bavikar SN. Herman-Bachinsky Y. Haj-Yahya N. Bondalapati S. Ciechanover A. Brik A. J. Am. Chem. Soc. 2014; 136: 2665
    • 16a Wu L.-P. Zee BM. Wang Y.-M. Garcia BA. Dou Y.-L. Mol. Cell. 2011; 43: 132
    • 16b Wu L.-P. Lee SY. Zhou B. Nguyen UT. Muir TW. Tan S. Dou Y.-L. Mol. Cell. 2013; 49: 1108
    • 16c Wu L.-P. Li L. Zhou B. Qin Z.-H. Dou Y.-L. Mol. Cell. 2014; 54: 920
    • 17a Fang G.-M. Li Y.-M. Shen F. Huang Y.-C. Li J.-B. Lin Y. Cui H.-K. Liu L. Angew. Chem. Int. Ed. 2011; 50: 7645
    • 17b Fang G.-M. Wang J.-X. Liu L. Angew. Chem. Int. Ed. 2012; 51: 10347
    • 17c Li Y.-M. Li Y.-T. Pan M. Kong X.-Q. Huang Y.-C. Hong Z.-Y. Liu L. Angew. Chem. Int. Ed. 2014; 53: 2198
    • 17d Tang S. Si Y.-Y. Wang Z.-P. Mei K.-R. Chen X. Cheng J.-Y. Zheng J.-S. Liu L. Angew. Chem. Int. Ed. 2015; 54: 5713
    • 17e Pan M. Gao S. Zheng Y. Tan X. Lan H. Tan X. Sun D. Lu L. Wang T. Zheng Q. Huang Y. Wang J. Liu L. J. Am. Chem. Soc. 2016; 138: 7429
    • 18a Luger K. Rechsteiner TJ. Richmond TJ. Methods Mol. Biol 1999; 119: 1
    • 18b Dyer PN. Edayathumangalam RS. White CL. Bao Y. Chakravarthy S. Muthurajan UM. Luger K. Methods Enzymol. 2003; 375: 23
  • 19 Taguchi H. Horikoshi N. Arimura Y. Kurumizaka H. Methods 2014; 70: 119