Synlett 2017; 28(13): 1558-1563
DOI: 10.1055/s-0036-1588728
cluster
© Georg Thieme Verlag Stuttgart · New York

Photoinduced Oxidative Cross-Coupling for O–S Bond Formation: A Facile Synthesis of Alkyl Benzenesulfonates

Atul K. Singh
a  College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. of China
,
Hong Yi
a  College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. of China
,
Guoting Zhang
a  College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. of China
,
Changliang Bian
a  College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. of China
,
Pengkun Pei
a  College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. of China
,
Aiwen Lei*
a  College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, P. R. of China
b  National Research Center for Carbohydrate Synthesis, Jiangxi Normal University, Nanchang 330022, Jiangxi, P. R. of China   Email: aiwenlei@whu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 10 January 2017

Accepted after revision: 30 January 2017

Publication Date:
28 February 2017 (online)


Abstract

We have developed a photoinduced oxidative cross-coupling of thiophenols with alcohols for O–S bond formation. The protocol uses visible light, a metal-free photocatalyst, and oxygen as the oxidant for the selective synthesis of alkyl benzenesulfonates; no ligand co-additive is necessary. Mechanistic studies suggested that the disulfide and alkyl benzenesulfinate are involved as intermediates and that the transformation proceeds by a radical pathway.

Supporting Information

 
  • References and Notes

    • 2a Liu C. Yuan J. Gao M. Tang S. Li W. Shi R. Lei A. Chem. Rev. 2015; 115: 12138
    • 2b Zhang G. Liu C. Yi H. Meng Q. Bian C. Chen H. Jian J.-X. Wu L.-Z. Lei A. J. Am. Chem. Soc. 2015; 137: 9273
    • 2c Liu C. Liu D. Lei A. Acc. Chem. Res. 2014; 47: 3459
    • 2d Girard SA. Knauber T. Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 2e Wang J. Liu C. Yuan J. Lei A. Angew. Chem. Int. Ed. 2013; 52: 2256
    • 2f Liu Q. Jackstell R. Beller M. Angew. Chem. Int. Ed. 2013; 52: 13871
    • 2g Liu D. Liu C. Li H. Lei A. Angew. Chem. Int. Ed. 2013; 52: 4453
    • 2h Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 2i Chen M. Zheng X. Li W. He J. Lei A. J. Am. Chem. Soc. 2010; 132: 4101
    • 2j Zhao Y. Wang H. Hou X. Hu Y. Lei A. Zhang H. Zhu L. J. Am. Chem. Soc. 2006; 128: 15048
    • 2k Li Z. Li C.-J. J. Am. Chem. Soc. 2004; 126: 11810
  • 3 Schenck GO. Krauch CH. Angew. Chem. 1962; 74: 510
    • 4a Straight RC. Spikes JD. In Singlet O2 . Vol. IV. Frimer AA. Chap. 2 CRC Press; Boca Raton: 1985: 91
    • 4b Gu C.-L. Foote CS. Kacher ML. J. Am. Chem. Soc. 1981; 103: 5949
    • 4c Gu C.-L. Foote CS. J. Am. Chem. Soc. 1982; 104: 6060
    • 4d Liang J.-J. Gu C.-L. Kacher ML. Foote CS. J. Am. Chem. Soc. 1983; 105: 4717
    • 4e Jensen F. Foote CS. J. Am. Chem. Soc. 1987; 109: 1478
    • 4f Sawaki Y. Ogata Y. J. Am. Chem. Soc. 1981; 103: 5947
    • 4g Takata T. Tamura Y. Ando W. Tetrahedron 1985; 41: 2133
    • 4h Akasaka T. Ando W. Tetrahedron Lett. 1985; 26: 5049
    • 4i Clennan EL. Chen X. J. Am. Chem. Soc. 1989; 111: 5787
    • 4j Ando W. Kabe Y. Miyazaki H. Photochem. Photobiol. 1980; 31: 191
    • 4k Ando W. Takata T. In Singlet O2 . Vol. III, Part 2. Frimer AA. CRC Press; Boca Raton: 1985: 1
  • 6 Sysak PK. Foote CS. Ching T.-Y. Photochem. Photobiol. 1977; 26: 19
    • 7a Banchereau E. Lacomhe S. Ollivier J. Tetrahedron Lett. 1995; 36: 8197
    • 7b Robert-Banchereau E. Lacombe S. Ollivier J. Tetrahedron 1997; 53: 2087
    • 7c Baciocchi E. Crescenzi C. Lanzalunga O. Tetrahedron 1997; 53: 4469
    • 7d Lacombe S. Cardy H. Simon M. Khoukh A. Soumillion JP. Ayadim M. Photochem. Photobiol. Sci. 2002; 1: 347
    • 7e Sheu C. Foote CS. Gu C.-L. J. Am. Chem. Soc. 1992; 114: 3015
    • 7f Jensen F. J. Org. Chem. 1992; 57: 6478
    • 7g Lacombe S. Loudet M. Dargelos A. Robert-Banchereau E. J. Org. Chem. 1998; 63: 2281
    • 7h Memarian HR. Mohammadpoor-Baltork I. Bahrami K. Bull. Korean Chem. Soc. 2006; 27: 106
    • 7i Lakkaraju PS. Zhou D. Roth HD. J. Chem. Soc., Perkin Trans. 2 1998; 1119
    • 7j Albini A. Bonesi SM. J. Photosci. 2003; 10: 1
    • 7k Baciocchi E. Del Giacco T. Ferrero MI. Rol C. Sebastiani GV. J. Org. Chem. 1997; 62: 4015
    • 7l Clennan EL. Zhou W. Chan J. J. Org. Chem. 2002; 67: 9368
    • 7m Latour V. Pigot T. Simon M. Cardy H. Lacombe S. Photochem. Photobiol. Sci. 2005; 4: 221
    • 7n Clennan EL. Acc. Chem. Res. 2001; 34: 875
    • 9a Kurita K. Chem. Ind. (London) 1974; 345
    • 9b Yoshida Y. Sakakura Y. Aso N. Okada S. Tanabe Y. Tetrahedron 1999; 55: 2183
    • 9c Hartung J. Hünig S. Kneuer R. Schwarz M. Wenner H. Synthesis 1997; 1433
    • 9d O’Connell JF. Rapoport H. J. Org. Chem. 1992; 57: 4775
    • 9e Katritzky AR. Zhang G. Wu J. Synth. Commun. 1994; 24: 205
    • 9f Kazemi F. Massah AR. Javaherian M. Tetrahedron 2007; 63: 5083
    • 9g Asano K. Matsubara S. Org. Lett. 2009; 11: 1757
    • 9h Karaman R. Leader H. Goldblum A. Breuer E. Chem. Ind. (London) 1987; 857
    • 9i Klamann D. Weyerstahl P. Chem. Ber. 1965; 98: 2070
    • 9j Nitta Y. Arakawa Y. Chem. Pharm. Bull. 1985; 33: 1380
    • 9k Mukaiyama T. Hojo K. Chem. Lett. 1976; 893
    • 9l Choudary BM. Chowdari NS. Kantam ML. Tetrahedron 2000; 56: 7291
    • 9m Das B. Reddy VS. Reddy MR. Tetrahedron Lett. 2004; 45: 6717
    • 9n Velusamy S. Kiran JS. K. Punniyamurthy T. Tetrahedron Lett. 2004; 45: 203
    • 9o Comagic S. Schirrmacher R. Synthesis 2004; 885
    • 9p Morita J. Nakatsuji H. Misaki T. Tanabe Y. Green Chem. 2005; 7: 711
    • 9q Morita J.-i. Nakatsuji H. Misaki T. Tanabe Y. Adv. Synth. Catal. 2006; 348: 2057
    • 10a Yoon TP. Ischay MA. Du J. Nat. Chem. 2010; 2: 527
    • 10b Sun C.-L. Shi Z.-J. Chem. Rev. 2014; 114: 9219
    • 10c Shi L. Xia W. Chem. Soc. Rev. 2012; 41: 7687
    • 10d Prier CK. Rankic DA. MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 10e Xie Z. Wang C. deKrafft KE. Lin W. J. Am. Chem. Soc. 2011; 133: 2056
    • 10f Xie J. Xue Q. Jin H. Li H. Cheng Y. Zhu C. Chem. Sci. 2013; 4: 1281
    • 10g Liu J. Liu Q. Yi H. Qin C. Bai R. Qi X. Lan Y. Lei A. Angew. Chem. Int. Ed. 2014; 53: 502
    • 10h Ischay MA. Anzovino ME. Du J. Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
    • 10i Dirocco DA. Rovis T. J. Am. Chem. Soc. 2012; 134: 8094
    • 10j Deng G.-B. Wang Z.-Q. Xia J.-D. Qian P.-C. Song R.-J. Hu M. Gong L.-B. Li J.-H. Angew. Chem. Int. Ed. 2013; 52: 1535
    • 10k Cherevatskaya M. Neumann M. Füldner S. Harlander C. Kümmel S. Dankesreiter S. Pfitzner A. Zeitler K. König B. Angew. Chem. Int. Ed. 2012; 51: 4062
    • 10l Cai S. Zhao X. Wang X. Liu Q. Li Z. Wang DZ. Angew. Chem. Int. Ed. 2012; 51: 8050
    • 10m Wang K. Meng L.-G. Zhang Q. Wang L. Green Chem. 2016; 18: 2864
    • 11a Fukuzumi S. Ohkubo K. Chem. Sci. 2013; 4: 561
    • 11b Fukuzumi S. Ohkubo K. Org. Biomol. Chem. 2014; 12: 6059
  • 12 Alkyl Benzenesulfonates 3; General Procedure An oven-dried Schlenk tube equipped with a magnetic stirrer bar was charged with Acr+–Mes ClO4 (5.0 mol%), capped with a septum, and evacuated. A balloon filled with O2 was connected to the Schlenk tube through the side arm, and thiophenol 1(1.0 mmol) and alcohol 2 (3.0 mL) were successively injected into the reaction tube. The mixture was irradiated with light from blue LEDs (3.0 W) and vigorously stirred at r.t. for 18–72 h (see Scheme 2). When the reaction was complete (TLC), the product was purified by flash column chromatography (silica gel, PE–EtOAc).