Synlett 2017; 28(10): 1165-1169
DOI: 10.1055/s-0036-1588714
letter
© Georg Thieme Verlag Stuttgart · New York

o-Phenylenediacetic Acid Anhydride in the Castagnoli–Cushman Reaction: Extending the Product Space to ε-Lactams

Olga Bakulina
,
Dmitry Dar’in
,
Mikhail Krasavin*
Further Information

Publication History

Received: 06 January 2017

Accepted after revision: 29 January 2017

Publication Date:
06 February 2017 (eFirst)

Abstract

The diversity of lactam products accessible by the Castagnoli–Cushman reaction (CCR) of imines and dicarboxylic acid anhydrides has been extended to privileged ε-lactams. This novel variant of the CCR using o-phenylenediacetic anhydride is often high-yielding and remarkably diastereoselective and allows the use of α-C–H imines.

Supporting Information

 
  • References and Notes

  • 1 Gonzalez-Lopez M, Shaw JT. Chem. Rev. 2009; 109: 164-164
  • 2 Ryabukhin SV, Panov DM, Granat DS, Ostapchuk EN, Kryvoruchko DV, Gkygorenko OO. ACS Comb. Sci. 2014; 16: 146-146
  • 3 Nadin A, Hattotuwagama C, Churcher I. Angew. Chem. Int. Ed. 2012; 51: 1114-1114
  • 4 Tang Y, Fettinger JC, Shaw JT. Org. Lett. 2009; 11: 3802-3802
    • 5a Castagnoli N. J. Org. Chem. 1969; 34: 3187-3187
    • 5b Cushman M, Castagnoli N. J. Org. Chem. 1973; 38: 440-440
  • 6 Cushman M, Gentry J, Dekow FW. J. Org. Chem. 1977; 42: 1111-1111
  • 7 Burdzhiev N, Stanoeva E, Shivachev B, Nikolova R. C. R. Chim. 2014; 17: 420-420
  • 8 Dar’in D, Bakulina O, Chizhova M, Krasavin M. Org. Lett. 2015; 17: 3930-3930
  • 9 Krasavin M, Dar'in D. Tetrahedron Lett. 2016; 57: 1635-1635
  • 10 Chizhova M, Bakulina O, Dar'in D, Krasavin M. ChemistrySelect 2016; 1: 5487-5487
  • 11 Cushman M, Madaj EJ. J. Org. Chem. 1987; 52: 907-907
  • 12 Ng PY, Masse CE, Shaw JT. Org. Lett. 2006; 8: 3999-3999
  • 13 Galli C, Mandolini L. Eur. J. Org. Chem. 2000; 3117-3117
  • 14 Liu J, Wang Z, Levin A, Emge TJ, Rablen PR, Floyd DM, Knapp S. J. Org. Chem. 2014; 79: 7593-7593
  • 15 Welsch ME, Snyder SE, Stockwell BR. Curr. Opin. Chem. Biol. 2010; 14: 1-1
  • 16 Ruzyllo W, Tendera M, Ford I, Fox KM. Drugs 2007; 67: 393-393
  • 17 Prajapati N, Giridhar R, Sinha A, Kanhed AM, Yadav MR. Mol. Diversity 2015; 19: 653-653
  • 18 Bulic B, Ness J, Hahn S, Rennhack A, Jumpertz T, Weggen S. Curr. Neuropharmacol. 2011; 9: 598-598
  • 19 Kang GA, Lee M, Song D, Lee HK, Ahn S, Park CH, Lee CO, Yun CS, Jung H, Kim P, Ha JD, Co SY, Kim HR, Hwang JY. Bioorg. Med. Chem. Lett. 2015; 25: 3992-3992
  • 20 Li H, Wen Y, Wang F, Wu P, Wei X. Tetrahedron Lett. 2015; 56: 5735-5735
  • 21 Adamovskyi MI, Ryabukhin SV, Sibgatulin DA, Rusanov E, Grygorenko OO. Org. Lett. 2017; 19: 130-130
  • 22 Wirta U, Fröhlich R, Wünsch B. Tetrahedron: Asymmetry 2005; 16: 2199-2199
  • 23 General Procedure for Castagnoli–Cushman Reaction of o-Phenylenediacetic Anhydride (1g) and Imines 2 A mixture of o-phenylenediacetic anhydride (1g, 1 equiv) and corresponding imine 2 (1 equiv) in dry toluene (2 mL/1 mmol) was stirred at 110 °C in a screw-cap vial for 2–18 h. The progress of the reaction was monitored by NMR spectroscopy. Compounds 4au were isolated from the reaction mixture using one of the following methods. Method A (4a,e–g,i–j,m–p,r,t) The crude reaction product was precipitated from the reaction mixture by dilution of the latter with n-hexane and the precipitate washed with hot MeCN (or crystallized from MeCN) to give pure compound 4. Method B (4b–d,k–l,u) CHCl3 (25 mL/1 mmol) and sat. NaHCO3 solution (25 mL/1 mmol) were added to the reaction mixture. After vigorous stirring (30 min), the layers were separated. The aqueous layer was further extracted with CHCl3 (20 mL/1 mmol) and acidified to pH 1 by careful addition of concd HCl at 0 °C. The precipitate was filtered, washed with water, and air-dried to give pure compound 4. Method C (4h,q)The reaction mixture was concentrated in vacuo to give the crude product, which was converted into the corresponding methyl ester by treatment with MeI (1.5 equiv) in acetone (10 mL) in the presence of K2CO3 (1.5 equiv) at r.t. for 24 h. Following filtration and concentration of the filtrate in vacuo, the crude methyl ester was purified by column chromatography on silica gel using an appropriate gradient of EtOAc in hexanes as eluent to provide the analytically pure methyl ester derivative of 4.
  • 24 Lepikhina A, Bakulina O, Dar’in D, Krasavin M. RSC Adv. 2016; 6: 83808-83808
  • 25 Characterization Data of Representative Compounds Compound 4a: white solid; mp 240–242 °C (MeCN). 1H NMR (400 MHz, DMSO-d 6, 80 °C): δ = 12.34 (br s, 1 H, CO2H), 7.31 (dd, J = 7.4, 1.3 Hz, 1 H), 7.28–7.23 (m, 2 H), 7.19 (td, J = 7.4, 1.5 Hz, 1 H), 7.14–7.07 (m, 3 H), 7.04 (d, J = 7.3 Hz, 1 H), 6.99 (d, J = 7.7 Hz, 1 H), 6.95 (dd, J = 7.6, 1.5 Hz, 1 H), 6.86–6.78 (m, 3 H), 5.46 (d, J = 9.6 Hz, 1 H, 1-H), 4.73 (d, J = 15.5 Hz, 1 H, α-H), 4.58 (d, J = 9.6 Hz, 1 H, 2-H), 4.15 (d, J = 15.4 Hz, 1 H, 5-H), 4.04 (d, J = 15.4 Hz, 1 H, 5-H), 3.82 (s, 3 H, OCH3), 3.72 (d, J = 15.5 Hz, 1 H, α-H). 13C NMR (101 MHz, DMSO-d 6, 80 °C): δ = 172.3, 170.5, 157.6, 138.2, 135.5, 134.9, 129.8, 129.5, 129.4, 128.9, 128.2, 128.0, 127.6, 127.4, 126.9, 126.6, 120.6, 112.1, 59.7, 56.1, 52.7, 48.9, 43.6. ESI-HRMS: m/z calcd for C25H23NNaO4 [M + Na]+: 424.1519; found: 424.1514. Compound 4h: white solid; mp 114–116 °C. 1H NMR (400 MHz, CDCl3): δ = 7.28–7.20 (m, 2 H), 7.15 (td, J = 7.5, 1.0 Hz, 1 H), 7.07 (d, J = 8.1 Hz, 2 H, 2′,6′-H), 6.89 (d, J = 7.5 Hz, 1 H), 6.81 (d, J = 8.0 Hz, 2 H, 3′,5′-H), 5.30 (d, J = 7.7 Hz, 1 H, 1-H), 4.24 (d, J = 7.7 Hz, 1 H, 2-H), 4.22–4.10 (m, 1 H, CH(CH3)2), 3.95 (s, 2 H, 2 × 5-H), 3.80 (s, 3 H), 3.77 (s, 3 H), 1.06 (d, J = 6.7 Hz, 1 H, CHCH3), 0.99 (d, J = 6.8 Hz, 1 H, CHCH3). 13C NMR (101 MHz, CDCl3): δ = 172.2, 170.3, 159.0, 135.3, 133.2, 133.2, 129.0, 128.1, 128.0, 127.7, 127.3, 113.9, 60.2, 56.8, 55.2, 52.5, 50.4, 44.7, 20.0, 19.8. ESI-HRMS: m/z calcd for C22H26NO4 [M + H]+: 354.1700; found: 354.1689. Compound 4l: beige solid; mp 190–192 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 13.12 (br s, 1 H, CO2H), 7.44 (dd, J = 4.5, 1.7 Hz, 1 H, 3′-H), 7.25–7.12 (m, 4 H), 6.99–6.90 (m, 2 H, 4′-H and 5′-H), 5.47 (d, J = 7.6 Hz, 1 H, 1-H), 4.66 (d, J = 7.7 Hz, 1 H, 2-H), 3.78 (d, J = 15.8 Hz, 1 H, 5-H), 3.65 (d, J = 15.8 Hz, 1 H, 5-H), 2.42–2.31 (m, 1 H, α-H), 0.75–0.67 (m, 2 H, β-CH2), 0.45–0.38 (m, 2 H, β-CH2). 13C NMR (101 MHz, DMSO-d 6): δ = 172.9, 172.4, 144.4, 134.5, 134.2, 129.8, 129.6, 128.0, 127.4, 126.1, 125.7, 60.6, 54.8, 44.3, 31.8, 8.9, 8.4. ESI-HRMS: m/z calcd for C18H18NO3S [M + H]+: 328.1002; found: 328.0989.
  • 26 Kulyashova A, Krasavin M. Tetrahedron Lett. 2016; 57: 4395-4395
  • 27 Vara Y, Bello T, Aldaba E, Arrieta A, Pizarro JL, Arriourtua MI, Lopez X, Cossio FP. Org. Lett. 2008; 10: 4759-4759
  • 28 CCDC 1518482 (4d), CCDC 1518076 (4f) and CCDC 1518481 (4k) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 29 Dar’in D, Bakulina O, Nikolskaya S, Gluzdikov I, Krasavin M. RSC Adv. 2016; 6: 49411-49411
    • 30a Vicente-García E, Kielland N, Lavilla R. In Multicomponent Reactions in Organic Synthesis . Zhu J, Wang Q, Wang M.-X. Wiley–VCH; Weinheim: 2014: 159-182
    • 30b Hulme C, Ayaz M, Martinez Ariza G, Medda F, Shaw A. In Small Molecule Medicinal Chemistry: Strategies and Technologies Hamley P.; Wiley–VCH: Weinheim, 2015; 145-187