Synthesis 2017; 49(07): 1664-1674
DOI: 10.1055/s-0036-1588672
paper
© Georg Thieme Verlag Stuttgart · New York

Ugi Four-Center Three-Component Reaction as a Direct Approach to Racetams

Răzvan C. Cioc
Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands   Email: e.ruijter@vu.nl   Email: r.v.a.orru@vu.nl
,
Lola Schaepkens van Riempst
Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands   Email: e.ruijter@vu.nl   Email: r.v.a.orru@vu.nl
,
Peter Schuckman
Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands   Email: e.ruijter@vu.nl   Email: r.v.a.orru@vu.nl
,
Eelco Ruijter*
Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands   Email: e.ruijter@vu.nl   Email: r.v.a.orru@vu.nl
,
Romano V. A. Orru*
Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands   Email: e.ruijter@vu.nl   Email: r.v.a.orru@vu.nl
› Author Affiliations
Further Information

Publication History

Received: 17 October 2016

Accepted after revision: 14 November 2016

Publication Date:
16 December 2016 (online)


Abstract

We report the synthesis of racetams, a diverse class of small molecule drugs, by means of the Ugi four-center three-component reaction (U4C-3CR). For the first time, γ-aminobutyric acid is employed as bifunctional input in the Ugi reaction. This protocol is simple, general, and allows one-pot access to a range of drugs and bioactive small molecules.

Supporting Information

 
  • References

    • 1a Lyseng-Williamson KA. Drugs 2011; 71: 489
    • 1b Malykh AG, Sadaie MR. Drugs 2010; 70: 287
    • 1c Gualtieri F, Manetti D, Romanelli MN, Ghelardini C. Curr. Pharm. Des. 2002; 8: 125
    • 1d Genton P, Van Vleymen B. Epileptic Disorders 2000; 2: 99
    • 2a Sola I, Aso E, Frattini D, López-González I, Espargaró A, Sabaté R, Di Pietro O, Luque FJ, Clos MV, Ferrer I, Muñoz-Torrero D. J. Med. Chem. 2015; 58: 6018
    • 2b Frycia A, Starck J.-P, Jadot S, Lallemand B, Leclercq K, Lo Brutto P, Matagne A, Verbois V, Mercier J, Kenda B. ChemMedChem 2010; 5: 200
    • 2c Kenda BM, Matagne AC, Talaga PE, Pasau PM, Differding E, Lallemand BI, Frycia AM, Moureau FG, Klitgaard HV, Gillard MR, Fuks B, Michel P. J. Med. Chem. 2004; 47: 530
  • 3 Ugi IK, Meyr R, Fetzer U, Steinbrückner C. Angew. Chem. 1959; 71: 373
  • 4 El Kaïm L, Grimaud L, Miranda LD, Vieu E. Tetrahedron Lett. 2006; 47: 8259
  • 5 Ku I.-W, Kang S.-B, Keum G.-C, Kim Y.-S. Bull. Korean Chem. Soc. 2011; 32: 3167
    • 6a Dawidowski M, Sobczak S, Wilczek M, Kulesza A, Turło J. Mol. Diversity 2013; 18: 61
    • 6b Dawidowski M, Herold F, Wilczek M, Turło J, Chodkowski A, Gomółka A, Kleps J. Tetrahedron 2012; 68: 8222
    • 6c Kadzimirsz D, Hildebrandt D, Merz K, Dyker G. Chem. Commun. 2006; 661
    • 6d Sollis SL. J. Org. Chem. 2005; 70: 4735
    • 6e Sung K, Chen F.-L, Chung M.-J. Mol. Diversity 2003; 6: 213
    • 6f Demharter A, Hörl W, Herdtweck E, Ugi I. Angew. Chem., Int. Ed. Engl. 1996; 35: 173
    • 6g Ugi I, Demharter A, Hörl W, Schmid T. Tetrahedron 1996; 52: 11657
    • 7a Sinha MK, Khoury K, Herdtweck E, Dömling A. Org. Biomol. Chem. 2013; 11: 4792
    • 7b Khoury K, Sinha MK, Nagashima T, Herdtweck E, Dömling A. Angew. Chem. Int. Ed. 2012; 51: 10280
    • 8a Voigt B, Linke M, Mahrwald R. Org. Lett. 2015; 17: 2606
    • 8b Turner CD, Ciufolini MA. Org. Lett. 2012; 14: 4970
    • 8c Ku IW, Cho S, Doddareddy MR, Jang MS, Keum G, Lee J.-H, Chung BY, Kim Y, Rhim H, Kang SB. Bioorg. Med. Chem. Lett. 2006; 16: 5244
    • 8d Kim YB, Choi EH, Keum G, Kang SB, Lee DH, Koh HY, Kim Y. Org. Lett. 2001; 3: 4149
    • 8e Park SJ, Keum G, Kang SB, Koh HY, Kim Y, Lee DH. Tetrahedron Lett. 1998; 39: 7109
    • 9a Banfi L, Basso A, Chiappe C, De Moliner F, Riva R, Sonaglia L. Org. Biomol. Chem. 2012; 10: 3819
    • 9b Basso A, Banfi L, Riva R, Guanti G. Tetrahedron Lett. 2004; 45: 587
    • 10a Gedey S, Van der Eycken J, Fülöp F. Org. Lett. 2002; 4: 1967
    • 10b Dömling A, Kehagia K, Ugi I. Tetrahedron 1995; 51: 9519
    • 10c Kehagia K, Ugi IK. Tetrahedron 1995; 51: 9523
    • 10d Hatanaka M, Nitta H, Ishimaru T. Tetrahedron Lett. 1984; 25: 2387
    • 10e Isenring HP, Hofheinz W. Synthesis 1981; 385
    • 11a For Ugi reactions with 6-aminohexanoic acid, see: Rasouli MA, Mahdavi M, Rashidi Ranjbar P, Saeedi M, Shafiee A, Foroumadi A. Tetrahedron Lett. 2012; 53: 7088
    • 11b For Ugi type reactions of dipeptides leading to diketopiperazines, see: Cho S, Keum G, Kang SB, Han SY, Kim Y. Mol. Diversity 2003; 6: 283
    • 11c For a review of the intramolecular Ugi reaction and its relevance to medicinal chemistry, see: Hulme C, Dietrich J. Mol. Diversity 2009; 13: 195
  • 12 Darehkordi A, Zand-Vakili F, Talebizadeh Rafsanjani A. Tetrahedron Lett. 2016; 57: 498
    • 13a Zhang L, Nefzi A. J. Comb. Chem. 2010; 12: 566
    • 13b Kenta S, Nishimori A, Kotsuki H, Nakano K, Ichikawa Y. Synlett 2013; 757
  • 14 Galli C, Mandolini L. Eur. J. Org. Chem. 2000; 3117
  • 15 Wilson RM, Stockdill JL, Wu X, Li X, Vadola PA, Park PK, Wang P, Danishefsky SJ. Angew. Chem. Int. Ed. 2012; 51: 2834
  • 16 See the Supporting Information for details.

    • TFE is often seen to improve the yield of Ugi type reactions, see for example:
    • 17a Xia L, Li S, Chen R, Liu K, Chen X. J. Org. Chem. 2013; 78: 3120
    • 17b Thompson MJ, Chen B. J. Org. Chem. 2009; 74: 7084
    • 17c Fan L, Adams AM, Polisar JG, Ganem B. J. Org. Chem. 2008; 73: 9720
    • 18a Iacobucci C, Reale S, Gal J.-F, De Angelis F. Eur. J. Org. Chem. 2014; 7087
    • 18b Medeiros GA, da Silva WA, Bataglion GA, Ferreira DA. C, de Oliveira HC. B, Eberlin MN, Neto BA. D. Chem. Commun. 2014; 50: 338
    • 18c van Rijssel ER, Goumans TP. M, Lodder G, Overkleeft HS, van der Marel GA, Codée JD. C. Org. Lett. 2013; 15: 3026
    • 18d Chéron N, Ramozzi R, El Kaïm L, Grimaud L, Fleurat-Lessard P. J. Org. Chem. 2012; 77: 1361
  • 19 The need for depolymerization of paraformaldehyde could be the problem in this case; however, the use of a stabilized monomeric methanolic solution did not improve the yield.
  • 20 van der Heijden G, Jong JA. W, Ruijter E, Orru RV. A. Org. Lett. 2016; 18: 984
  • 21 Osborn H, Schneider JF. 2-Morpholinoethyl Isocyanide. In e-EROS Encyclopedia of Reagents for Organic Synthesis. Wiley-VCH; Weinheim: 2001
  • 22 The formation of product 4m was observed in the HRMS spectrum, but NMR analysis of the crude reaction showed a complex mixture that hampered its isolation.

    • Isocyanide additions are notoriously poorly diastereoselective, see:
    • 23a de Graaff C, Ruijter E, Orru RV. A. Chem. Soc. Rev. 2012; 41: 3969
    • 23b van Berkel SS, Bogels BG. M, Wijdeven MA, Westermann B, Rutjes F. Eur. J. Org. Chem. 2012; 3543
  • 24 Possibly due to competing N,O-acetal formation.
  • 25 For the formation of δ-lactams via Ugi 4C-3CR of dipeptides, see: ref. 11b.
  • 26 Forcato M, Michieletto I, Maragni P, Assaccesi F, Cotarca L. WO 012268, 2008
  • 27 This reaction occurred with quantitative conversion based on crude NMR analysis, but the purification of 4ee from the reaction mixture proved troublesome.
  • 28 Wu X.-F, Sharif M, Feng J.-B, Neumann H, Pews-Davtyan A, Langer P, Beller M. Green Chem. 2013; 15: 1956
  • 29 Kotkar SP, Sudalai A. Tetrahedron Lett. 2006; 47: 6813
  • 30 Kamihara S, Kaneuchi T, Uchiyama K, Terada T. US 5461157, 1995
  • 31 Butler DE, Nordin IC, L’Italien YJ, Zweisler L, Poschel PH, Marriott JG. J. Med. Chem. 1984; 27: 684