Synlett 2017; 28(01): 73-77
DOI: 10.1055/s-0036-1588647
cluster
© Georg Thieme Verlag Stuttgart · New York

5(4H)-Oxazolones as Effective Aminoacylation Reagents for the 3′-Terminus of RNA

Ziwei Liua, Cassandra Hansona, Ghinwa Ajrama, Laurent Boiteaua, Jean-Christophe Rossia, Grégoire Dangerb, Robert Pascal*a
  • aCNRS – University of Montpellier – ENSCM, Institut des Biomolécules Max Mousseron, UMR5247, CC17006, Pl. E. Bataillon, 34095 Montpellier Cedex 5, France   Email: robert.pascal@umontpellier.fr
  • bLaboratoire de Physique des Interactions Ioniques et Moléculaires, Aix-Marseille Université – CNRS, UMR 7345, Centre de Saint-Jérôme, Case 252, Avenue Escadrille Normandie-Niemen, 13397 Marseille, France
Further Information

Publication History

Received: 29 July 2016

Accepted after revision: 13 October 2016

Publication Date:
09 November 2016 (eFirst)

Abstract

Nucleosides and methylated nucleotide models were used as substrates to identify pathways for the chemical aminoacylation of ribonucleic acids (RNA) as a prerequisite for the evolution of translation. A selective and comparatively efficient reaction of a 5(4H)-oxazolone with the 2′- and 3′-OH of the ribonucleotide models was observed. Surprisingly, a similar reaction starting from an α-amino acid N-carboxyanhydride (NCA), selected as an acylating agent potentially leading to the unprotected ester required for translation, was not observed, which was confirmed using an acylated NCA equivalent. The reasons for this difference are analysed.

Supporting Information

 
  • References and Notes

  • 1 Orgel LE. J. Mol. Evol. 1989; 29: 465
  • 2 Wickramasinghe NS. M. D, Lacey JC. Mol. Cell. Biochem. 1994; 139: 117
  • 3 Profy AT, Usher DA. J. Am. Chem. Soc. 1984; 106: 5030
  • 4 Illangasekare M, Sanchez G, Nickles T, Yarus M. Science 1995; 267: 643
  • 5 Saito H, Suga H. J. Am. Chem. Soc. 2001; 123: 7178
    • 6a Borsenberger V, Crowe MA, Lehbauer J, Raftery J, Helliwell M, Bhutia K, Cox T, Sutherland JD. Chem. Biodiversity 2004; 1: 203
    • 6b Pascal R, Boiteau L, Commeyras A. Top. Curr. Chem. 2005; 259: 69
    • 6c Ruiz-Mirazo K, Briones C, de la Escosura A. Chem. Rev. 2014; 114: 285
  • 7 Joyce GF, Orgel LE In The RNA World . Gesteland RF, Cech TR, Atkins JF. Cold Spring Harbor Laboratory Press; New York; 1999. 2nd ed. 49
  • 8 Liu Z, Rigger L, Rossi J.-C, Sutherland JD, Pascal R. Chem. Eur. J. 2016; 22: 14940
  • 9 Danger G, Michaut A, Bucchi M, Boiteau L, Canal J, Plasson R, Pascal R. Angew. Chem. Int. Ed. 2013; 52: 611
  • 10 5′-AMP was methylated by reaction with dicyclohexylcarbodiimide in methanol.26
  • 11 Reactions were carried out in aqueous solution using non-nu­cleophilic MES (MES = morpholinoethane sulfonic acid) buffers at pH 6.5. O-Methylated tyrosine Tyr(Me) was used as a model of usual amino acid derivatives. N-Ac-Tyr(Me)-5(4H)-oxazolone is stable at –20 °C as a solid or in MeCN solution for several weeks (see ref. 8).
  • 12 Wolfenden R, Rammler DH, Lipmann F. Biochemistry 1964; 3: 329
  • 13 Beaufils D, Danger G, Boiteau L, Rossi J.-C, Pascal R. Chem. Commun. 2014; 50: 3100
  • 14 Gottikh BP, Krayevskyn AA, Tarussovap B, Purygin P, Tsilevic TL. Tetrahedron 1970; 26: 4419
    • 15a Lacey JC, Hawkins AF, Thomas RD, Watkins CL. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 4996
    • 15b Lacey JC, Wickramasinghe NS, Cook GW, Anderson G. J. Mol. Evol. 1993; 37: 233
    • 16a Taillades J, Collet H, Garrel L, Beuzelin I, Boiteau L, Choukroun H, Commeyras A. J. Mol. Evol. 1999; 48: 638
    • 16b Leman L, Orgel L, Ghadiri MR. Science 2004; 306: 283
    • 16c Danger G, Boiteau L, Cottet H, Pascal R. J. Am. Chem. Soc. 2006; 128: 7412
  • 17 Daly WH, Poché D. Tetrahedron Lett. 1988; 29: 5859
  • 18 The acetylated NCA 2b was prepared by acylation of the nonsubstituted derivative17,19 with acetyl chloride in the presence of N-methylmorpholine according to the general procedure described in ref.20 for urethane-N-carboxyanhydrides. Tyr(Me)-NCA (0.3 g, 1.36 mmol) and acetyl choride (0.101 mL, 1.43 mmol) were dissolved in dry THF (5 mL) under a N2 stream. The system was kept at –10°C using a methanol/ice (50:50) bath. Dry N-methylmorpholine (NMM, 0.22 mL, 2 mmol) was added dropwise into flask under N2. The slurry was stirred at –10 °C for 1.5 h. Excess NMM was neutralized by adjusting the pH to 3–5 by the addition of HCl (0.15 mL of a 4 M solution in dioxane). The precipitate was removed by filtration then washed by THF twice. After concentration of the filtrate under reduced pressure, the resulting oil was dissolved in THF (minimum) and hexane was added until crystallization started. The solution was placed at –15 °C overnight. The white product was collected by filtration and dried under vacuum to give Ac-Tyr(Me) NCA as a solid (138 mg, 38.7%). 1H NMR (300 MHz, CDCl3): δ = 7.01–6.91 (m, 2 H), 6.90–6.80 (m, 2 H), 5.01 (dd, J = 5.7, 2.4 Hz, 1 H), 3.79 (s, 3H), 3.60–3.20 (m, 2 H), 2.54 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 169.06, 165.77, 159.48, 148.19, 130.42, 124.09, 114.55, 60.49, 55.21, 33.79, 24.69.
  • 19 Liu Z, Beaufils D, Rossi J.-C, Pascal R. Sci. Rep. 2014; 4: 7440
    • 20a Fuller WD, Cohen MP, Shabankareh M, Blair RK, Goodman M, Naider FR. J. Am. Chem. Soc. 1990; 112: 7414
    • 20b Fuller WD, Goodman M, Naider FR, Zhu Y.-F. Biopolymers 1996; 40: 183
  • 21 Murillo-Sánchez S, Beaufils D, González Mañas JM, Pascal R, Ruiz-Mirazo K. Chem. Sci. 2016; 7: 3406
  • 22 Profy AT, Usher DA. J. Mol. Evol. 1984; 20: 147
  • 23 Pascal R, Boiteau L In Origin and Evolution of Life: An Astrobiology Perspective . Gargaud M, López-García P, Martin H. Cambridge University Press; Cambridge; 2011: 247
  • 24 Müller UF, Bartel DP. Chem. Biol. 2003; 10: 799
    • 25a Rangelov MA, Petrova GP, Yomtova VM, Vayssilov GN. J. Org. Chem. 2010; 75: 6782
    • 25b Weinger JS, Parnell KM, Dorner S, Green R, Strobel SA. Nat. Struct. Mol. Biol. 2004; 11: 1101
    • 25c Weinger JS, Strobel SA. Biochemistry 2006; 45: 5939
    • 25d Bernhardt HS. Origins Life Evol. Biospheres 2015; 45: 15
  • 26 Smith M, Moffatt JG, Khorana HG. J. Am. Chem. Soc. 1958; 80: 6204