Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2016; 27(19): 2631-2636
DOI: 10.1055/s-0036-1588633
DOI: 10.1055/s-0036-1588633
synpacts
Lewis Base Catalyzed Nucleophilic Substitutions of Alcohols
Further Information
Publication History
Received: 31 August 2016
Accepted after revision: 29 September 2016
Publication Date:
18 October 2016 (online)
Abstract
Nucleophilic substitutions (SN) at sp3-hybridized carbon centers are one of the most fundamental type of transformation in organic synthesis. Taking the importance of bimolecular SN reactions into account, catalytic variants must be considered as underdeveloped. This review highlights the most recent progress in the emerging field of Lewis base catalyzed SN-type transformations that are mediated by simple acid chlorides and anhydrides.
1 Introduction
2 Phosphine Oxide and Cyclopropenone Catalysis
3 Formamide Catalysis
4 Other Catalytic Systems
5 Conclusion
-
References and Notes
- 1a An J, Denton RM, Lambert TH, Nacsa ED. Org. Biomol. Chem. 2014; 12: 2993
- 1b Smith MB In March’s Advanced Organic Chemistry . 7th ed. Wiley; Hoboken, NJ: 2013: 500-503
- 1c Margaretha P In Science of Synthesis . Vol. 35. Schaumann E. Thieme; Stuttgart: 2007: 1-188
- 1d Larock RC In Comprehensive Organic Transformations . Wiley-VCH; New York: 1999: 689-702
- 2a Dryzhakov M, Richmond E, Moran J. Synthesis 2016; 48: 935
- 2b Baeza A, Nájera C. Synthesis 2014; 46: 25
- 2c Emer E, Sinisi R, Capdevila MG, Petruzziello D, Vincentiis FD, Cozzi PG. Eur. J. Org. Chem. 2011; 647
- 3 For selected reviews on catalytic SN reactions of allylic alcohols proceeding through metal-π-allyl complexes, see ref. 2a and: Sundararaju B, Achard M, Bruneau C. Chem. Soc. Rev. 2012; 41: 4467
- 4 Walden P. Ber. Dtsch. Chem. Ges. 1896; 29: 133
- 5a Swamy KC. K, Kumar NN. B, Balaraman E, Kumar KV. P. P. Chem. Rev. 2009; 109: 2551
- 5b But TY. S, Toy PH. Chem. Asian J. 2007; 2: 1340
- 5c Castro BR In Organic Reactions . Vol. 29. Dauben WG. Wiley; New York: 1983: 1-162
- 6a Appel R. Angew. Chem., Int. Ed. Engl. 1975; 14: 801 ; Angew. Chem. 1975, 87, 863
- 6b Hughes DL In Organic Reactions . Vol. 42. Paquette LA. Wiley; New York: 1992: 335-656
- 7a Eissen M, Metzger JO. Chem. Eur. J. 2002; 8: 3580
- 7b Sheldon RA. Green Chem. 2007; 9: 1273
- 7c Li CJ, Trost BM. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 13197
- 7d Newhouse T, Baran PS, Hoffmann RW. Chem. Soc. Rev. 2009; 38: 3010
- 7e Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
- 7f Sheldon RA. Chem. Soc. Rev. 2012; 41: 1437
- 7g Dunn PJ. Chem. Soc. Rev. 2012; 41: 1452
- 8 Representatives of the pharmaceutical industry specified the development of greener OH group activations as the second most desired demand: Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL. Jr, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaksh A, Zhang TY. Green Chem. 2007; 9: 411
- 10 Wuts PG. M In Greene’s Protective Groups in Organic Synthesis . Wiley; New York: 2014. 5th ed. 240
- 11a Denton RM, An J, Adeniran B. Chem. Commun. 2010; 46: 3025
- 11b Denton RM, An J, Adeniran B, Blake AJ, Lewis W, Poulton AM. J. Org. Chem. 2011; 76: 6749
- 12a Henkelmann J, Troetsch-Schaller I, Wettling T, Kahl T.-M, Hupfer L, Franzischka W, Koehler H. EP 0514683, 1995
- 12b Rohde T, Hutenloch O, Osswald F, Wissel K. WO 2007028761, 2007
- 13 For a phosphine-catalyzed Appel-type bromination procedure, in which an intermediate phosphine oxide is reduced by Ph2SiH2 to ensure catalyst turn over, see: van Kalkeren HA, Leenders SH. A. M, Rianne C, Hommersom A, Rutjes FP. J. T, van Delft FL. Chem. Eur. J. 2011; 17: 11290
- 14a Vanos CM, Lambert TH. Angew. Chem. Int. Ed. 2011; 50: 12222 ; Angew. Chem. 2011, 123, 12430
- 14b Nacsa ED, Lambert TH. Org. Lett. 2013; 15: 38
- 15 Huy PH, Motsch S, Kappler SM. Angew. Chem. Int. Ed. 2016; 55: 10145 ; Angew. Chem. 2016, 128, 10300
- 16 Partially unpublished results.
- 17a Pasedach H, Fischer R. DE 1135893, 1962
- 17b Ludsteck D, Neubauer G, Pasedach H, Seefelder M. DE 1133716, 1962
- 18a Hepburn DR, Hudson HR. J. Chem. Soc., Perkin Trans. 1 1976; 754
- 18b Yoshihara M, Eda T, Sakai K, Maeshima T. Synthesis 1980; 746
- 18c De Luca L, Giacomelli G, Porcheddu A. Org. Lett. 2002; 4: 553
- 18d Dubey A, Upadhyay AK, Kumar P. Tetrahedron Lett. 2010; 51: 744
- 18e Dai C, Narayanam JM. R, Stephenson CR. J. Nat. Chem. 2011; 3: 140
- 19 Hall HK. Jr. J. Am. Chem. Soc. 1956; 78: 2717
- 20 Nguyen TV, Bekensir A. Org. Lett. 2014; 16: 1720
- 21 Sun L, Peng G, Niu H, Wang Q, Li C. Synthesis 2008; 3919
- 22a But TY. S. B, Toy PH. J. Am. Chem. Soc. 2006; 128: 9636
- 22b Hirose D, Taniguchi T, Ishibashi H. Angew. Chem. Int. Ed. 2013; 52: 4613 ; Angew. Chem. 2013, 125, 4711
- 22c Hirose D, Gazvoda M, Kosmrlj J, Taniguchi T. Chem. Sci. 2016; 7: 5148
- 22d Buonomo JA, Aldrich CC. Angew. Chem. Int. Ed. 2015; 54: 13041 ; Angew. Chem. 2015, 127, 13233
- 22e O’Brien C. WO 2010118042, 2010
- 23 Hirose D, Gazvoda M, Kosmrlj J, Taniguchi T. Org. Lett. 2016; 18: 4036
For selected reviews concerning SN1-type Lewis and Brønsted acid catalyzed substitutions of alcohols, see:
Recent reviews about the Mitsunobu reaction:
Reviews about the Appel and related reactions:
Selected reviews and articles about sustainability in chemistry:
For phosphine oxide catalyzed chlorination procedures from BASF with thionyl chloride and phosgene, respectively, see:
For early DMF-catalyzed chlorination processes of the BASF with thionyl chloride and phosgene, respectively, see:
For chlorinations of alcohols driven by Vilsmeier–Haack-type reagents, see: