Synlett 2018; 29(02): 185-188
DOI: 10.1055/s-0036-1588571
letter
© Georg Thieme Verlag Stuttgart · New York

Preparation of Propargyl Amines in a ZnCl2–Dimethylurea Deep-Eutectic Solvent

Martin Obst
a   Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany   Email: burkhard.koenig@chemie.uni-regensburg.de
,
Akriti Srivastava
b   Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India   Email: sbhaskar@iitm.ac.in
,
Sundarababu Baskaran*
b   Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India   Email: sbhaskar@iitm.ac.in
,
Burkhard König*
a   Institut für Organische Chemie, Universität Regensburg, Universitätsstraße 31, 93040 Regensburg, Germany   Email: burkhard.koenig@chemie.uni-regensburg.de
› Author Affiliations
We thank the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG 9209735) and DST (INT/FRG/DFG/P-44/2014) for financial support.
Further Information

Publication History

Received: 25 July 2017

Accepted after revision: 29 August 2017

Publication Date:
21 September 2017 (online)


Abstract

The coupling of an aldehyde, an amine, and an alkyne to yield propargyl amines was performed in a deep-eutectic solvent composed of zinc chloride and dimethylurea. The deep-eutectic solvent acts simultaneously as catalyst and solvent giving access to a variety of propargyl amines, which were isolated in moderate to very good yields.

Supporting Information

 
  • References and Notes

  • 1 Zhang Q. De Oliveira Vigier K. Royer S. Jérôme F. Chem. Soc. Rev. 2012; 41: 7108
  • 2 Liu P. Hao J.-W. Mo L.-P. Zhang Z.-H. RSC Adv. 2015; 5: 48675
  • 3 Maugeri Z. Dominguez de Maria P. RSC Adv. 2012; 2: 421
  • 4 Abbott AP. Capper G. Davies DL. Rasheed RK. Tambyrajah V. Chem. Commun. 2003; 70
  • 5 Ruß C. König B. Green Chem. 2012; 14: 2969
  • 6 Illgen F. König B. Green Chem. 2009; 11: 848
  • 7 Imperato G. Vasold R. König B. Adv. Synth. Catal. 2006; 348: 2243
  • 8 Vidal C. Garcia-Alvarez J. Hernan-Gomez A. Kennedy AR. Hevia E. Angew. Chem. Int. Ed. 2014; 53: 5969
  • 9 Vidal C. Garcia-Alvarez J. Hernan-Gomez A. Kennedy AR. Hevia E. Angew. Chem. Int. Ed. 2016; 55: 16145
  • 10 Gore S. Baskaran S. König B. Org. Lett. 2012; 14: 4568
  • 11 Gore S. Baskaran S. König B. Adv. Synth. Catal. 2012; 354: 2368
  • 12 Gore S. Baskaran S. König B. Green Chem. 2011; 13: 1009
  • 13 Gore S. Chinthapally K. Baskaran S. König B. Chem. Commun. 2013; 49: 5052
  • 14 Peshkov VA. Pereshivko OP. Van der Eycken EV. Chem. Soc. Rev. 2012; 41: 3790
  • 15 Naidoo S. Jeena V. Heterocycles 2016; 92: 1655
  • 16 Park SB. Alper H. Chem. Commun. 2005; 1315
  • 17 Lu J. Li X.-T. Ma E.-Q. Mo L.-P. Zhang Z.-H. ChemCatChem 2014; 6: 2854
  • 18 Patil UB. Singh AS. Nagarkar JM. RSC Adv. 2014; 4: 1102
  • 19 Wang A. Xing P. Zheng X. Cao H. Yang G. Zheng X. RSC Adv. 2015; 5: 59022
  • 20 Tran PH. Nguyen HT. Hansen PE. Le TN. RSC Adv. 2016; 6: 37031
  • 21 Nguyen HT. Tran PH. RSC Adv. 2016; 6: 98365
  • 22 Ramu E. Varala R. Sreelatha N. Adapa SR. Tetrahedron Lett. 2007; 48: 7184
  • 23 Mishra S. Bagdi AK. Ghosh M. Sinha S. Hajra A. RSC Adv. 2014; 4: 6672
  • 24 General Procedure for the Synthesis of Propargyl Amines The aldehyde was added to the DES (for preparation of DES, see the Supporting Information), followed by the amine (1.5 equiv) and the alkyne (1.5 equiv), and the reaction was performed at 80 °C for 20 h. For workup, the hot reaction mixture was diluted with 2 mL water and extracted four times with 5 mL EtOAc. The combined organic layers were dried over Na2SO4, and the product was isolated applying flash column chromatography (gradient of EtOAC in PE). 4-​[1-​(4-​Iodophenyl)​-​3-​phenyl-​2-​propyn-​1-​yl]​-morpholine (5) 4-Iodobenzaldehyde (232 mg, 1.0 mmol) was reacted with morpholine (131 μL, 1.5 mmol) and phenylacetylene (165 μL, 1.5 mmol). The reaction was performed in 1 g of melt, prepared from 0.31 g ZnCl2 and 0.69 g DMU; yield 336 mg (82%). 1H NMR (300 MHz, CDCl3): δ = 7.73–7.69 (m, 2 H), 7.57–7.51 (m, 2 H), 7.43–7.40 (m, 2 H), 7.37–7.32 (m, 3 H), 4.74 (s, 1 H), 3.80–3.68 (m, 4 H), 2.63 (t, J = 4.5 Hz, 4 H). 13C NMR (75 MHz, CDCl3): δ = 137.8, 137.4, 131.9, 130.6, 128.5, 128.4, 122.7, 93.6, 89.0, 84.3, 67.1, 61.4, 49.9. ESI-MS: m/z calcd for C19H18INO [MH]+: 404.0512; found: 404.0533. EA (%, theoretical values in brackets): C, 56.50 (56.59); H, 4.36 (4.50); N, 3.38 (3.47).