Synlett 2017; 28(14): 1724-1728
DOI: 10.1055/s-0036-1588470
cluster
© Georg Thieme Verlag Stuttgart · New York

Easy Access to Quinolin-2(1H)-ones via a One-Pot Tandem Oxa-Michael–Aldol Sequence

Lucie Jarrige
Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France   Email: geraldine.masson@cnrs.fr
,
Jeremy Merad
Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France   Email: geraldine.masson@cnrs.fr
,
Siwar Zaied
Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France   Email: geraldine.masson@cnrs.fr
,
Florent Blanchard
Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France   Email: geraldine.masson@cnrs.fr
,
Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France   Email: geraldine.masson@cnrs.fr
› Author Affiliations
Further Information

Publication History

Received: 28 April 2017

Accepted after revision: 06 June 2017

Publication Date:
27 June 2017 (online)


Published as part of the ISHC Conference Special Section

Abstract

An efficient strategy for the synthesis of a variety of quinolin-2(1H)-one derivatives has been developed. The reaction proceeded from cinnamide derivatives via a tandem reaction in the presence of NaOH to afford the corresponding 2- quinolin-2(1H)-one derivatives in good to excellent yields.

Supporting Information

 
  • References and Notes


    • For some representative examples, see:
    • 1a He J. Lion U. Sattler I. Gollmick F.-A. Grabley S. Cai J. Meiner M. Schaumann K. Dechert U. Krohn M. J. Nat. Prod. 2005; 68: 1397
    • 1b Ito C. Itoigawa M. Furukawa A. Hirano T. Murata T. Kaneda N. Hisada Y. Okuda K. Furukawa H. J. Nat. Prod. 2004; 67: 1800
    • 1c Chung H.-S. Woo W.-S. J. Nat. Prod. 2001; 64: 1579
    • 1d Grabley S. Thiericke R. Drug Discovery from Nature . Springer; Berlin: 1999: 124
    • 1e Michael JP. Nat. Prod. Rep. 1997; 14: 605
    • 1f Balasubramanian M. Keay JG. Comprehensive Heterocyclic Chemistry II . Vol. 5. Katritzky AR. Rees CW. Scriven EF. V. Pergamon; Oxford: 1996: 245
    • 1g Michael JP. Nat. Prod. Rep. 1995; 12: 465
    • 1h Hanuman JB. Katz A. Nat. Prod. Lett. 1993; 3: 227

      For recent reviews on biological studies of 2-quinolinones, see:
    • 2a Tashima T. Bioorg. Med. Chem. Lett. 2015; 25: 3415
    • 2b Poulie CB. M. Bunch L. ChemMedChem. 2013; 8: 5
    • 2c Heeb S. Fletcher MP. Chhabra SR. Diggle SP. Williams P. Cámara M. FEMS Microbiol. Rev. 2011; 35: 247

      For selected examples, see:
    • 3a Paramaguru G. Solomon RV. Jagadeeswari S. Venuvanalingam P. Renganathan R. Eur. J. Org. Chem. 2014; 753
    • 3b Ganesan P. Chandiran A. Gao P. Rajalingam R. Grätzel M. Nazeeruddin MK. J. Phys. Chem. C 2014; 118: 16896
    • 3c Micotto TL. Brown AS. Wilson JN. Chem. Commun. 2009; 7548
    • 3d Badgujar NS. Pazicky M. Traar P. Terec A. Uray G. Stadlbauer W. Eur. J. Org. Chem. 2006; 2715
    • 3e Goodell JR. Puig-Basagoiti F. Forshey BM. Shi P.-Y. Ferguson DM. J. Med. Chem. 2006; 49: 2127

      For selected recent examples, see:
    • 4a Li H. Cheng P. Jiang L. Yang J.-L. Zu L. Angew. Chem. Int. Ed. 2017; 56: 2754
    • 4b Vacala T. Bejcek LP. Williams CG. Williamson AC. Vadola PA. J. Org. Chem. 2017; 82: 2558
    • 4c Zhang Z. Liao L. Yan S. Wang L. He Y. Ye J. Li J. Zhi Y. Yu D. Angew. Chem. Int. Ed. 2016; 55: 7068
    • 4d Guan N. Pang Y. Zhang J. Zhao Y. Chem. Commun. 2016; 52: 7043
    • 4e Huang B. Shen Y. Mao Z. Liu Y. Cui S. Org. Lett. 2016; 18: 4888
    • 4f Luo L. Tao K. Peng X. Hu C. Lu Y. Wang Y. RSC Adv. 2016; 6: 104463
    • 4g Li X. Li X. Jiao N. J. Am. Chem. Soc. 2015; 137: 9246
    • 4h Yang X. Hu X. Loh T. Org. Lett. 2015; 17: 1481
    • 4i Zhang J. Han X. Lu X. Synlett 2015; 26: 1744
    • 4j Lu C.-Y. Chuang C.-P. Synthesis 2015; 47: 3687
    • 4k Wu J. Xiang S. Zeng J. Leow M. Liu X. Org. Lett. 2015; 17: 222
    • 4l Zeng R. Dong G. J. Am. Chem. Soc. 2015; 137: 1408
    • 4m Dong Y. Liu B. Chen P. Liu Q. Wang M. Angew. Chem. Int. Ed. 2014; 53: 3442
    • 4n Manikandan R. Jeganmohan M. Org. Lett. 2014; 16: 3568
    • 4o Kim J. Moon Y. Lee S. Hong S. Chem. Commun. 2014; 50: 3227
    • 4p Aksenov AV. Smirnov AN. Aksenov NH. Beller M. Wu X.-F. Chem. Eur. J. 2014; 20: 14189
    • 5a Gelis C. Dumoulin A. Bekkaye M. Neuville L. Masson G. Org. Lett. 2017; 19: 278
    • 5b Jarrige L. Levitre G. Masson G. J. Org. Chem. 2016; 7230
    • 5c Dumoulin A. Masson G. J. Org. Chem. 2016; 81: 10154
    • 5d Gelis C. Bekkaye M. Lebée C. Blanchard F. Masson G. Org. Lett. 2016; 18: 3422
    • 5e Pous J. Courant T. Bernadat G. Iorga BI. Blanchard F. Masson G. J. Am. Chem. Soc. 2015; 137: 11950
    • 5f He L. Laurent G. Retailleau P. Folléas B. Brayer J.-L. Masson G. Angew. Chem. Int. Ed. 2013; 52: 11088
    • 5g Courant T. Kumarn S. He L. Masson G. Adv. Synth. Catal. 2013; 355: 836
    • 5h Dagousset G. Zhu J. Masson G. J. Am. Chem. Soc. 2011; 133: 14804
  • 6 The structure of 2h was unambiguously confirmed by X-ray crystallographic analyses. CCDC 1542892 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/getstructures (or from the Cambridge Crystallographic Center, 12 Union Road, CambridgeCB21EZ, UK; Fax: +44(1223)336033; or deposit@ccdc.cam.ac.uk).

    • For recent reviews on oxa-Michael reaction, see:
    • 7a Nising CF. Brase S. Chem. Soc. Rev. 2008; 37: 1218

    • Examples of oxy-Michael addition to cinnamides:
    • 7b Molander GA. Wisniewski SR. Hosseini-Sarvaria M. Adv. Synth. Catal. 2013; 355: 3037
    • 7c Jegham N. Kacem Y. BenHassine B. Heterocycles 2010; 81: 707
    • 7d Weidner-Wells MA. Fraga-Spano SA. Turchi IJ. J. Org. Chem. 1998; 63: 6319

    • For selected examples, see:
    • 7e Kisanga PB. Verkade JG. J. Org. Chem. 2002; 67: 3555
    • 7f Kisanga PB. Ilankumaran P. Fetterly BM. Verkade JG. J. Org. Chem. 2002; 67: 3555
    • 7g Buchanan DJ. Dixon DJ. Hernandez-Juan FA. Org. Lett. 2004; 6: 1357
    • 7h Wang L. Menche D. J. Org. Chem. 2012; 77: 10811
    • 7i Fridén-Saxin M. Seifert T. Landergren MR. Suuronen T. Lahtela-Kakkonen M. Jarho EM. Luthman K. J. Med. Chem. 2012; 55: 7104
    • 7j Guo S.-H. Xing S.-Z. Mao S. Gao Y.-R. Chen W.-L. Wang Y.-Q. Tetrahedron Lett. 2014; 55: 6718
    • 7k Yoneda N. Hotta A. Asano K. Matsubara S. Org. Lett. 2014; 16: 6264

      For recent examples of thio-Michael–aldol tandem reaction, see:
    • 10a Nguyen TT. H. Nguyen TX. Cao TT. T. Dinh TH. Nguyen HH. Bui TT. T. Pham VP. Mac DH. Synlett 2017; 28: 429
    • 10b Dodda R. Mandal T. Zhao C.-G. Tetrahedron Lett. 2008; 49: 1899
    • 10c Zhao GL. Vesely J. Rios R. Ibrahem I. Sundén H. Córdova A. Adv. Synth. Catal. 2008; 350: 237
    • 10d Zu L. Wang J. Li H. Xie H. Jiang W. Wang W. J. Am. Chem. Soc. 2007; 129: 1036
  • 11 For a selected review, see: Parra A. Tortosa M. ChemCatChem 2015; 7: 1524
  • 12 Representative Procedure for Tandem Reaction To a solution of substrate 1a (75.0 mg, 0.22 mmol, 1 equiv) in a mixture of EtOH and H2O (6 mL/3 mL, 2:1, 0.02 M) was added NaOH (35 mg, 0.87 mmol, 4 equiv) at r.t. The reaction mixture was stirred for 2 h at r.t. After completion, the reaction mixture was acidified with HCl (2 M) until pH = 7, and the solvent was remove under reduced pressure. The residue was then diluted in water, and the solution was extracted three times with EtOAc. The combined organic layers were washed with brine and dried with MgSO4. The organic layer was evaporated under reduced pressure, and the crude product was purified by flash chromatography on silica gel (n-heptane/EtOAc = 7:3) to afford the corresponding pure product 2b as a yellow solid (54 mg, isolated yield 75%); mp 236–240°C. 1H NMR (300 MHz, DMSO-d 6): δ = 11.87 (br s, 1 H), 9.33 (s, 1 H), 7.98 (s, 1 H), 7.91 (d, J = 2.6 Hz, 1 H), 7.49 (dd, J = 8.7, 2.4 Hz, 1 H), 7.28 (d, J = 8.7 Hz, 1 H), 7.16 (d, J = 8.7 Hz, 2 H), 6.68 (d, J = 8.6 Hz, 2 H), 5.42 (s, 1 H), 3.43 (qd, J = 7.0, 3.2 Hz, 2 H), 1.16 (t, J = 7.0 Hz, 3 H) ppm. 13C NMR (75 MHz, DMSO-d 6): δ = 160.4 (C), 157.8 (C), 136.5 (C), 135.8 (C), 132.8 (CH), 130.8 (C), 129.6 (CH), 128.6 (2 CH), 127.0 (CH), 125.6 (C), 120.3 (C), 116.6 (CH), 114.8 (2 CH), 76.4 (CH), 63.6 (CH2), 15.2 (CH3) ppm. IR (neat): ν = 3188, 3100, 2965, 2881, 2679, 1893, 1765, 1646, 1612, 1594, 1571, 1516, 1491, 1450, 1414, 1373, 1329, 1313, 1268, 1245, 1229, 1205, 1173, 1153, 1127, 1107, 1085, 1057, 1005 cm–1. ESI-HRMS (neg.): m/z [M – H]calcd for C18H15ClNO3: 328.0740; found: 328.0750.