Synlett 2017; 28(08): 873-878
DOI: 10.1055/s-0036-1588395
synpacts
© Georg Thieme Verlag Stuttgart · New York

Biomimetic Oxidative Carbene Catalysis: Enabling Aerial Oxygen as a Terminal Oxidant

Anton Axelsson, Linda Ta, Henrik Sundén*
  • Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden   Email: sundenh@chalmers.se
Further Information

Publication History

Received: 02 December 2016

Accepted: 26 December 2016

Publication Date:
31 January 2017 (eFirst)

Abstract

Oxidative carbene catalysis is a quickly growing field in organic synthesis. However, these catalytic protocols traditionally rely on the stoichiometric addition of a high-molecular-weight oxidant, providing these reactions with a high E-factor. Here, we review efforts to replace high-molecular-weight oxidants with oxygen using a biomimetic system of coupled electron-transfer mediators. Two reactions are discussed: the aerobic oxidative esterification of aldehydes and the aerobic oxidative NHC-catalyzed enantioselective formation of dihydropyranones.

1 Introduction

2 Biomimetic Oxidations

3 Oxidative NHC Catalysis

4 NHC-Catalyzed Aerobic Oxidative Esterification of α,β-Unsaturated Aldehydes

5 Aerobic Enantioselective Synthesis of Dihydropyranones

6 Conclusion

 
  • References

  • 1 Classics in Total Synthesis: Targets, Strategies, Methods. Nicolaou KC, Sorensen EJ. Wiley-VCH; Weinheim; 1996
  • 2 Modern Oxidation Methods . 2nd ed.; Bäckvall J.-E. Wiley-VCH; Weinheim; 2010: 465
  • 3 Smidt J, Hafner W, Jira R, Sedlmeier J, Sieber R, Rüttinger R, Kojer H. Angew. Chem. 1959; 71: 176
    • 4a Jonsson SY, Adolfsson H, Bäckvall J.-E. Chem. Eur. J. 2003; 9: 2783
    • 4b Closson A, Johansson M, Bäckvall J.-E. Chem. Commun. 2004; 1494
    • 5a Bäckvall J.-E, Chowdhury RL, Karlsson U. J. Chem. Soc., Chem. Commun. 1991; 473
    • 5b Wang G.-Z, Andreasson U, Bäckvall J.-E. J. Chem. Soc., Chem. Commun. 1994; 1037
    • 6a Piera J, Närhi K, Bäckvall J.-E. Angew. Chem. Int. Ed. 2006; 45: 6914
    • 6b Piera J, Persson A, Caldentey X, Bäckvall J.-E. J. Am. Chem. Soc. 2007; 129: 14120
    • 7a Enders D, Balensiefer T. Acc. Chem. Res. 2004; 37: 534
    • 7b Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 7c Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 7d Biju AT, Kuhl N, Glorius F. Acc. Chem. Res. 2011; 44: 1182
  • 8 Menon RS, Biju AT, Nair V. Beilstein J. Org. Chem. 2016; 12: 444
  • 9 Yetra SR, Patra A, Biju AT. Synthesis 2015; 47: 1357
  • 10 Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
  • 11 Ukai T, Tanaka R, Dokawa T. J. Pharm. Soc. Jpn. 1943; 63: 296
  • 12 Breslow R. J. Am. Chem. Soc. 1958; 80: 3719
  • 13 Jordan F. Nat. Prod. Rep. 2003; 20: 184
  • 14 Ragsdale SW. Chem. Rev. 2003; 103: 2333
  • 15 Tittmann K, Wille G, Golbik R, Weidner A, Ghisla S, Hübner G. Biochemistry 2005; 44: 13291
    • 16a De Sarkar S, Biswas A, Samanta RC, Studer A. Chem. Eur. J. 2013; 19: 4664
    • 16b Knappke CE. I, Imami A, von Wangelin AJ. ChemCatChem 2012; 4: 937
  • 17 Kharasch MS, Joshi BS. J. Org. Chem. 1957; 22: 1439
  • 18 Guin J, De Sarkar S, Grimme S, Studer A. Angew. Chem. Int. Ed. 2008; 47: 8727
    • 19a Maki BE, Chan A, Phillips EM, Scheidt KA. Org. Lett. 2007; 9: 371
    • 19b Maki BE, Scheidt KA. Org. Lett. 2008; 10: 4331
    • 19c Maki BE, Chan A, Phillips EM, Scheidt KA. Tetrahedron 2009; 65: 3102
  • 20 Zhao X, Ruhl KE, Rovis T. Angew. Chem. Int. Ed. 2012; 51: 12330
  • 21 Noonan C, Baragwanath L, Connon SJ. Tetrahedron Lett. 2008; 49: 4003
  • 22 Uno T, Inokuma T, Takemoto Y. Chem. Commun. 2012; 48: 1901

    • Connon and co-workers recently reported the aerobic oxidative esterification of benzaldehydes. The reaction is proposed to go through the oxidation of benzoin and not the acyl azolium:
    • 23a Delany EG, Fagan C.-L, Gundala S, Mari A, Broja T, Zeitler K, Connon SJ. Chem. Commun. 2013; 49: 6510
    • 23b Delany EG, Fagan C.-L, Gundala S, Zeitler K, Connon SJ. Chem. Commun. 2013; 49: 6513
    • 24a Chiang P.-C, Bode JW. Org. Lett. 2011; 13: 2422
    • 24b Maji B, Vedachalan S, Ge X, Cai S, Liu X.-W. J. Org. Chem. 2011; 76: 3016
    • 24c Xin Y.-C, Shi S.-H, Xie D.-D, Hui X.-P, Xu P.-F. Eur. J. Org. Chem. 2011; 6527
    • 25a Rosa JN, Reddy RS, Candeias NR, Cal PM. S. D, Gois PM. P. Org. Lett. 2010; 12: 2686
    • 25b Zhao J, Mueck-Lichtenfeld C, Studer A. Adv. Synth. Catal. 2013; 355: 1098
    • 26a Ta L, Axelsson A, Bijl J, Haukka M, Sundén H. Chem. Eur. J. 2014; 20: 13889
    • 26b Axelsson A, Ta L, Sundén H. Catalysts 2015; 5: 2052
    • 26c Sundén H, Ta L, Axelsson A. J. Visualized Exp. 2015; (105) e53213
    • 26d Axelsson A, Ta L, Sundén H. Eur. J. Org. Chem. 2016; 3339
    • 27a Anson CW, Ghosh S, Hammes-Schiffer S, Stahl SS. J. Am. Chem. Soc. 2016; 138: 4186
    • 27b Wendlandt AE, Stahl SS. Angew. Chem. Int. Ed. 2015; 54: 14638
  • 28 Piera J, Bäckvall J.-E. Angew. Chem. Int. Ed. 2008; 47: 3506
  • 29 Ta L, Axelsson A, Sundén H. Green. Chem. 2016; 18: 686
    • 30a Albanese DC. M, Gaggero N. Eur. J. Org. Chem. 2014; 5631
    • 30b Zhang F.-Y, Corey EJ. Org. Lett. 2000; 2: 1097
    • 31a Zhu Z.-Q, Zheng X.-L, Jiang N.-F, Wan X, Xiao J.-C. Chem. Commun. 2011; 47: 8670
    • 31b Mo J, Shen L, Chi YR. Angew. Chem. Int. Ed. 2013; 52: 8588
    • 31c De Sarkar S, Studer A. Angew. Chem. Int. Ed. 2010; 49: 9266
    • 32a Ni Q, Xiong J, Song X, Raabe G, Enders D. Chem. Commun. 2015; 51: 14628
    • 32b Wang G, Chen X, Miao G, Yao W, Ma C. J. Org. Chem. 2013; 78: 6223
    • 32c Sun F.-G, Sun L.-H, Ye S. Adv. Synth. Catal. 2011; 353: 3134
  • 33 Xie D, Shen D, Chen Q, Zhou J, Zeng X, Zhong G. J. Org. Chem. 2016; 81: 6136
  • 34 Que Y, Lu Y, Wang W, Wang Y, Wang H, Yu C, Li T, Wang X.-S, Shen S, Yao C. Chem. Asian J. 2016; 11: 626
  • 35 Axelsson A, Hammarvid E, Ta L, Sunden H. Chem. Commun. 2016; 52: 11571
  • 36 For a related reaction, see: Robinson ER. T, Fallan C, Simal C, Slawin AM. Z, Smith AD. Chem. Sci. 2013; 4: 2193