Synlett 2017; 28(05): 601-606
DOI: 10.1055/s-0036-1588361
letter
© Georg Thieme Verlag Stuttgart · New York

Rapid Ligand-Free Base-Accelerated Copper-Catalyzed Homocoupling Reaction of Arylboronic Acids

Ya-Nan Cao
a   School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. of China
b   Department of Chinese Traditional Herbal, Agronomy College, Sichuan Agriculture University, Chengdu 611130, P. R. of China   Email: gaofeng@sicau.edu.cn   Email: xxbiochem@163.com
,
Xin-Chuan Tian
b   Department of Chinese Traditional Herbal, Agronomy College, Sichuan Agriculture University, Chengdu 611130, P. R. of China   Email: gaofeng@sicau.edu.cn   Email: xxbiochem@163.com
,
Xing-Xiu Chen
b   Department of Chinese Traditional Herbal, Agronomy College, Sichuan Agriculture University, Chengdu 611130, P. R. of China   Email: gaofeng@sicau.edu.cn   Email: xxbiochem@163.com
,
Yun-Xin Yao
b   Department of Chinese Traditional Herbal, Agronomy College, Sichuan Agriculture University, Chengdu 611130, P. R. of China   Email: gaofeng@sicau.edu.cn   Email: xxbiochem@163.com
,
Feng Gao*
a   School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. of China
b   Department of Chinese Traditional Herbal, Agronomy College, Sichuan Agriculture University, Chengdu 611130, P. R. of China   Email: gaofeng@sicau.edu.cn   Email: xxbiochem@163.com
,
Xian-Li Zhou*
a   School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 19 August 2016

Accepted after revision: 30 October 2016

Publication Date:
17 November 2016 (online)


Abstract

A rapid, ligand-free, base-accelerated, copper-catalyzed homocoupling reaction of (het)arylboronic acids is presented. A ­CuCl2·2H2O/Na2CO3-based catalyst enabled the formation of bi(het)aryl compounds by a homocoupling process in moderate to excellent yields (72–97%) within 15 minutes. A mechanism for the copper-catalyzed base-accelerated reaction is proposed.

Supporting Information

 
  • References and Notes

  • 1 Kozlowski MC, Morgan BJ, Linton EC. Chem. Soc. Rev. 2009; 38: 3193
    • 2a Ezaki M, Iwami M, Yamashita M, Hashimoto S, Komori T, Umehara K, Mine Y, Kohsaka M, Aoiki H, Imanaka H. J. Antibiot. 1985; 38: 1453
    • 2b Uchida I, Ezaki M, Shigematsu N, Hashimoto M. J. Org. Chem. 1985; 50: 1341
    • 2c Chang CC, Morton GO, James JC, Siegel MM, Kuck NA, Testa RT, Borders DB. J. Antibiot. 1991; 44: 674
    • 2d Lépine R, Zhu JP. Org. Lett. 2005; 7: 2981
    • 3a Nelson RA, Pope JA. Jr, Luedemann GM, McDaniel LE, Schaffner CP. J. Antibiot. 1986; 39: 335
    • 3b Ling D, Shield LS, Rinehart KL. Jr. J. Antibiot. 1986; 39: 345
    • 3c Li Z, Gao Y, Tang Y, Dai M, Wang G, Wang Z, Yang Z. Org. Lett. 2008; 10: 3017
    • 4a Kraft A, Grimsdale AC, Holmes AB. Angew. Chem. Int. Ed. 1998; 37: 402
    • 4b McFarland SA, Finney NS. J. Am. Chem. Soc. 2001; 123: 1260
    • 4c Long Y.-T, Rong H.-T, Buck M, Grunze M. J. Electroanal. Chem. 2002; 524: 62
    • 4d Casalbore-Miceli G, Degli Esposti A, Fattori V, Marconi G, Sabatini C. Phys. Chem. Chem. Phys. 2004; 6: 3092
    • 5a Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
    • 5b Chen Y, Yekta S, Yudin AK. Chem. Rev. 2003; 103: 3155
    • 5c Khanbabaee K, Basceken S, Flörke U. Tetrahedron: Asymmetry 2006; 17: 2804
    • 5d Corbet J.-P, Mignani G. Chem. Rev. 2006; 106: 2651
    • 6a Deng JZ, Paone DV, Ginnetti AT, Kurihara H, Dreher SD, Weissman SA, Stauffer SR, Burgey CS. Org. Lett. 2008; 11: 345
    • 6b Jin M.-J, Lee D.-H. Angew. Chem. Int. Ed. 2010; 49: 1119
    • 6c Yuan B, Pan Y, Li Y, Yin B, Jiang H. Angew. Chem. 2010; 122: 4148
    • 6d Schmidt B, Riemer M. J. Org. Chem. 2014; 79: 4104
    • 6e Gurung SK, Thapa S, Kafle A, Dickie DA, Giri R. Org. Lett. 2014; 16: 1264
    • 7a Roling PV, Rausch MD. J. Org. Chem. 1972; 37: 729
    • 7b Nettekoven U, Widhalm M, Kamer PC. J, van Leeuwen PW. N. M, Mereiter K, Lutz M, Spek AL. Organometallics 2000; 19: 2299
    • 7c Karimi B, Esfahani FK. Chem. Commun. 2011; 47: 10452
    • 7d Wang W, Shi X, Wang S, Van Hove MA, Lin N. J. Am. Chem. Soc. 2011; 133: 13264
    • 7e Kamal A, Srinivasulu V, Seshadri BN, Markandeya N, Alarifi A, Shankaraiah N. Green Chem. 2012; 14: 2513
    • 7f Lewis EA, Murphy CJ, Liriano ML, Sykes EC. H. Chem. Commun. 2014; 50: 1006
    • 7g Nasrollahzadeh M, Sajadi SM, Khalaj M. RSC Adv. 2014; 4: 47313
    • 7h Zhang C, Sun Q, Chen H, Tan Q, Xu W. Chem. Commun. 2015; 51: 495
  • 8 Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
    • 9a Parrish JP, Jung YC, Floyd RJ, Jung KW. Tetrahedron Lett. 2002; 43: 7899
    • 9b Xu Z, Mao J, Zhang Y. Catal. Commun. 2008; 9: 97
    • 9c Mitsudo K, Shiraga T, Kagen D, Shi D, Becker JY, Tanaka H. Tetrahedron 2009; 65: 8384
    • 9d Mu B, Li T, Fu Z, Wu Y. Catal. Commun. 2009; 10: 1497
    • 9e Prastaro A, Ceci P, Chiancone E, Boffi A, Fabrizi G, Cacchi S. Tetrahedron Lett. 2010; 51: 2550
    • 9f Santos-Filho EF, Sousa JC, Bezerra NM. M, Menezes PH, Oliveira RA. Tetrahedron Lett. 2011; 52: 5288
    • 9g Dwivedi S, Bardhan S, Ghosh P, Das S. RSC Adv. 2014; 4: 41045
    • 9h Kapdi AR, Dhangar G, Serrano JL, De Haro JA, Lozanod P, Fairlamb IJ. S. RSC Adv. 2014; 4: 55305
    • 9i Wu N, Li X, Xu X, Wang Y, Xu Y, Chen X. Lett. Org. Chem. 2010; 7: 11
    • 9j Mitsudo K, Shiraga T, Tanaka H. Tetrahedron Lett. 2008; 49: 6593
    • 9k Xia JH, Cheng MZ, Chen QR, Cai MZ. Appl. Organomet. Chem. 2015; 29: 113
    • 9l Li M, González-Esguevillas M, Berritt S, Yang X, Bellomo A, Walsh PJ. Angew. Chem. Int. Ed. 2016; 55: 2825
    • 10a Baig RB. N, Varma RS. Green Chem. 2013; 15: 398
    • 10b Carrettin S, Guzman J, Corma A. Angew. Chem. Int. Ed. 2005; 44: 2242
    • 10c Zheng J, Lin S, Zhu X, Jiang B, Yang Z, Pan Z. Chem. Commun. 2012; 48: 6235
    • 10d Dhital RN, Kamonsatikul C, Somsook E, Sato Y, Sakurai H. Chem. Commun. 2013; 49: 2542
    • 10e Sk MP, Jana CK, Chattopadhyay A. Chem. Commun. 2013; 49: 8235
    • 10f Wang L, Wang H, Zhang W, Zhang J, Lewis JP, Meng X, Xiao F.-S. J. Catal. 2013; 298: 186
    • 10g Falck JR, Mohapatra S, Bondlela M, Venkataraman SK. Tetrahedron Lett. 2002; 43: 8149
    • 10h Vogler T, Studer A. Adv. Synth. Catal. 2008; 350: 1963
    • 11a Kaboudin B, Mostafalu R, Yokomatsu T. Green Chem. 2013; 15: 2266
    • 11b Dar BA, Singh S, Pandey N, Singh AP, Sharma P, Lazar A, Sharma M, Vishwakarma RA, Singh B. Appl. Catal., A 2014; 470: 232
    • 11c Puthiaraj P, Suresh P, Pitchumani K. Green Chem. 2014; 16: 2865
    • 11d Mulla SA. R, Chavan SS, Pathan MY, Inamdar SM, Shaikh TM. Y. RSC Adv. 2015; 5: 24675
    • 11e Hussain N, Gogoi P, Azhaganand VK, Shelke MV, Das MR. Catal. Sci. Technol. 2015; 5: 1251
    • 11f Demir AS, Reis Ö, Emrullahoglu M. J. Org. Chem. 2003; 68: 10130
    • 11g Kirai N, Yamamoto Y. Eur. J. Org. Chem. 2009; 1864
    • 11h Kaboudin B, Haruki T, Yokomatsu T. Synthesis 2011; 91
    • 11i Cheng GJ, Luo MM. Eur. J. Org. Chem. 2011; 2519
    • 11j Raul PK, Mahanta A, Bora U, Thakur AJ, Veer V. Tetrahedron Lett. 2015; 56: 7069
  • 12 Fihri A, Bouhrara M, Nekoueishahraki B, Basset J.-M, Polshettiwar V. Chem. Soc. Rev. 2011; 40: 5181
    • 14a Gao F, Wang D, Huang X. Fitoterapia 2013; 90: 79
    • 14b Chen X.-X, Gao F, Wang Q, Huang X, Wang D. Fitoterapia 2014; 92: 111
    • 14c Wen G, Qu X.-X, Wang D, Chen X.-X, Tian X.-C, Gao F, Zhou X.-L. Fitoterapia 2016; 110: 26
    • 15a van der Bol JM, Visser TJ, Loos WJ, de Jong FA, Wiemer EA. C, van Aken MO, Planting AS, Schellens JH, Verweij J, Mathijssen RH. J. Cancer Chemother. Pharmacol. 2011; 67: 231
    • 15b Maio M, Grob JJ, Aamdal S, Bondarenko I, Robert C, Thomas L, Garbe C, Chiarion-Sileni V, Testori A, Chen TT, Tschaika M, Wolchok JD. J. Clin. Oncol. 2015; 33: 1191
    • 15c Amatu A, Sartore-Bianchi A, Moutinho C, Belotti A, Bencardino K, Chirico G, Cassingena A, Rusconi F, Esposito A, Nichelatti M, Esteller M, Siena S. Clin. Cancer Res. 2013; 19: 2265
    • 16a Owen LA, Uehara H, Cahoon J, Huang W, Simonis J, Ambati BK. PLoS One 2012; 7: e33576
    • 16b Yun CH, Boggon TJ, Li YQ, Woo MS, Greulich H, Meyerson M, Eck MJ. Cancer Cell 2007; 11: 217
    • 16c Morales G, Picazo JJ, Baos E, Candel FJ, Arribi A, Peláez B, Andrade R, de la Torre MÁ, Fereres J, Sánchez-García M. Clin. Infect. Dis. 2010; 50: 821
    • 17a Markó IE, Giles PR, Tsukazaki M, Brown SM, Christopher JU. Science 1996; 274: 2044
    • 17b Markó IE, Tsukazaki M, Giles PR, Brown SM, Christopher JU. Angew. Chem. Int. Ed. 1997; 36: 2208
  • 18 Rao H, Fu H. Synlett 2011; 745 ; and references therein
  • 19 Carrow BP, Hartwig JF. J. Am. Chem. Soc. 2011; 133: 2116
  • 20 Miyaura N. J. Organomet. Chem. 2002; 653: 54
  • 21 Ding S, Xu L, Li P. ACS Catal. 2016; 6: 1329
  • 22 Bi(het)aryls 2at; General Procedure A vial was charged with the appropriate (het)arylboronic acid (0.3 mmol), CuCl2·2H2O (2.5 mg, 5 mol%), Na2CO3 (10 mol%), and MeOH (1 mL), and the mixture was stirred at 25 °C in the air for 5–15 min while the reaction was monitored by TLC. The reaction was then quenched with two drops of H2O. The mixture was then diluted with EtOAc (2 mL) and filtered through a pad of MgSO4 and silica. The pad was rinsed with additional EtOAc, and the solution was concentrated in vacuum. The crude material was purified by flash chromatography (silica gel). 4,4′-Di-tert-butylbiphenyl (2a) Prepared by following the general procedure with (4-tert-butylphenyl)boronic acid (53.4 mg, 0.3 mmol) for 15 min at r.t. Purification by flash chromatography (silica gel, PE) gave a white solid; yield: 37.9 mg (95%); mp 126–127 °C. 1H NMR (400 MHz, CDCl3): δ = 7.57 (d, J = 8.4 Hz, 4 H), 7.49 (d, J = 8.4 Hz, 4 H), 1.40 (s, 18 H). 13C{1H} NMR (100 MHz, CDCl3): δ = 149.9, 138.2, 126.6, 125.6, 34.5, 31.4.