Synlett 2017; 28(02): 221-224
DOI: 10.1055/s-0036-1588328
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of α-Substituted Diphenylphosphinocarboxylic Acids and Their Palladium Complexes

Kananat Naksomboon
a  Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands   Email: m.a.fernandezibanez@uva.nl
,
Carolina Valderas
a  Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands   Email: m.a.fernandezibanez@uva.nl
,
Beatriz Maciá*
b  Division of Chemistry & Environmental Science, Manchester Metropolitan University, Oxford Road, M1 5GD, Manchester, UK   Email: b.macia-ruiz@mmu.ac.uk
,
M.Ángeles Fernández-Ibáñez*
a  Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands   Email: m.a.fernandezibanez@uva.nl
› Author Affiliations
Further Information

Publication History

Received: 15 July 2016

Accepted after revision: 20 September 2016

Publication Date:
06 October 2016 (online)


Abstract

A general and efficient synthesis of α-substituted phosphinoacetic acids using simple esters and diphenylchlorophosphine–borane as readily available starting materials is here described. The formation and structure of the corresponding palladium complex derived from 2-ethyl diphenylphosphinoacetic acid is also reported.

Supporting Information

 
  • References and Notes

    • 2a Bauer RS, Chung H, Glockner PW, Keim W, van Zwet H. US 3635937, 1972
    • 2b Glockner PW, Keim W, Mason R. US 3647914, 1972
    • 2c Bauer R, Chung H, Barnett KW, Glockner PW, Keim W. US 3686159, 1972
    • 2d Bauer RS, Glockner PW, Keim W, van Zwet H, Chung H. US 3644563, 1972
    • 2e Glockner PW, Keim W, Mason RF. US 3647914, 1972
    • 2f Eur. Chem. News Apr 5, 1982, 26; Jan 26, 1981, 27; Jul 6, 1981, 23; Feb 11, 1980, 27.
    • 3a Himgst M, Tepper M, Stelzer O. Eur. J. Inorg. Chem. 1998; 73
    • 3b Brauer DJ, Kottseper KW, Nickel T, Stelzer O, Sheldrick WS. Eur. J. Inorg. Chem. 2001; 1251
    • 3c Lam H, Horton PN, Hursthouse MB, Aldous DJ, Hii KK. Tetrahedron Lett. 2005; 46: 8145
    • 4a Uozumi Y, Suzuki N, Ogiwara A, Hayashi T. Tetrahedron 1994; 50: 4293
    • 4b Stadler A, Kappe CO. Org. Lett. 2002; 4: 3541
    • 4c Zhao Q.-Y, Shi M. Tetrahedron 2011; 67: 3724
    • 4d Mei L.-y, Yuan Z.-l, Shi M. Organometallics 2011; 30: 6466
    • 5a Van Doorn JA, Meijboom N. Phosphorus, Sulfur, and Silicon 1989; 42: 211

    • For selected examples that follow route a, see:
    • 5b Keim W, Schulz RP. J. Mol. Catal. 1994; 92: 21
    • 5c Honaker MT, Sandefur BJ, Hargett JL, McDaniel AL, Salvatore RN. Tetrahedron Lett. 2003; 44: 8373
    • 5d Ebran J.-P, Jubault P, Pannecoucke X, Quirion J.-C. Tetrahedron: Asymmetry 2003; 14: 1637

    • For a selected example that follows route b, see:
    • 5e Sun X.-M, Manabe K, Lam WW.-L, Shiraishi N, Kobayashi J, Shiro M, Utsumi H, Kobayashi S. Chem. Eur. J. 2005; 11: 361

      For some examples on the synthesis of phosphorylacetic acid derivatives, see:
    • 6a Ismagilov RK, Razumov AI, Zhuravleva GG, Zykova VV, Yafarova RL, Bezborodova TA. Pharmaceut. Chem. J. 1982; 16: 196
    • 6b Chen Z.-S, Zhou Z.-Z, Hua H.-L, Duan X.-H, Luo J.-Y, Wang J, Zhou P.-X, Liang Y.-M. Tetrahedron 2013; 69: 1065
    • 6c Jiang H, Jin H, Abdukader A, Lin A, Cheng Y, Zhu C. Org. Biomol. Chem. 2013; 11: 3612
  • 7 Kloetzing RJ, Knochel P. Tetrahedron: Asymmetry 2006; 17: 116
  • 8 General Experimental Procedure n-BuLi (3.75 mL for 1.6 M solution in hexane or 2.40 mL for 2.5 M solution in hexane, 6.00 mmol, 1.2 equiv) was added to a solution of i-Pr2NH (0.98 mL, 7.00 mmol, 1.4 equiv) in THF (1.50 mL) at 0 °C under nitrogen atmosphere and stirred for 30 min. Then, the reaction mixture was cooled down to –78 °C, and a solution of the corresponding ester (5.00 mmol, 1 equiv) in THF (25.00 mL) was added dropwise. The resulting mixture was stirred at –78 °C for 1 h. In a separate flask, a mixture of Ph2PCl (2.75 mL, 14.85 mmol, 2.97 equiv) and BH3·THF (15.00 mL, 1 M, 15.00 mmol, 3 equiv) in Et2O (9.30 mL) was stirred for 30 min at room temperature and subsequently added dropwise to the reaction mixture at –78 °C. The reaction was warmed up to room temperature and stirred over the time period indicated for each example. Next, the reaction was quenched with H2O (0.30 mL) and Et3N (0.50 mL) and evaporated to dryness. The resulting crude was dissolved in CH2Cl2 (30 mL) and washed with sat. aq NaCl solution (30 mL). The organic layer was dried over anhydrous MgSO4, filtered, and concentrated under reduced pressure. The crude was then purified by column chromatography to obtain the desired product.
  • 9 Analytical Data for Representative Products Methyl 2-Ethyl Diphenylphosphinoacetate–borane (1) Yield 73%; mp 74–76 °C. 1H NMR (400 MHz, CDCl3): δ = 7.92–7.85 (m, 2 H), 7.75–7.65 (m, 2 H), 7.57–7.38 (m, 6 H), 3.41 (s, 3 H), 3.36 (td, J = 11.5, 3.1 Hz, 1 H), 2.00–1.84 (m, 1 H), 1.82–1.67 (m, 1 H), 0.96 (t, J = 7.3 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 170.8 (d, J = 3.6 Hz), 133.8 (d, J = 9.5 Hz), 132.8 (d, J = 9.1 Hz), 131.9 (d, J = 2.5 Hz), 131.6 (d, J = 2.5 Hz), 128.9 (d, J = 2.5 Hz), 128.7 (d, J = 2.6 Hz), 127.9 (d, J = 54.4 Hz), 126.3 (d, J = 53.9 Hz), 52.0 (s), 46.5 (d, J = 26.3 Hz), 21.8 (s), 13.7 (d, J = 12.6 Hz). 31P NMR (162 MHz, CDCl3): δ = 23.03 (d, J = 72.1 Hz). 11B NMR (128 MHz, CDCl3): δ = –39.00 (br). IR: ν = 2402, 1720, 1435, 1259, 1236, 1062, 741, 692, 478 cm–1. HRMS (FD): m/z calcd for C17H22BO2P [M]+: 300.1445; found: 300.1451. Methyl 2-Phenyl Diphenylphosphinoacetate–borane (4) Yield 56%; mp 125–127 °C. 1H NMR (400 MHz, CDCl3): δ = 7.98–7.89 (m, 2 H), 7.63–7.53 (m, 3 H), 7.53–7.42 (m, 3 H), 7.40–7.32 (m, 2 H), 7.32–7.16 (m, 5 H), 4.87 (d, J = 12.2 Hz, 1 H), 3.59 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 168.7, 133.6 (d, J = 9.2 Hz), 132.9 (d, J = 8.9 Hz), 131.8 (d, J = 2.5 Hz), 131.3 (d, J = 2.4 Hz), 130.6 (d, J = 3.1 Hz), 130.1 (d, J = 4.4 Hz), 128.5 (d, J = 10.3 Hz), 128.4 (d, J = 10.0 Hz), 128.1 (d, J = 2.5 Hz), 128.0 (d, J = 2.0 Hz), 127.2 (d, J = 54.4 Hz), 126.3 (d, J = 53.5 Hz), 52.4, 51.1 (d, J = 25.2 Hz). 31P NMR (162 MHz, CDCl3): δ = 25.66 (d, J = 47.7 Hz). 11B NMR (128 MHz, CDCl3): δ = –38.51 (br). IR: ν = 2376, 2348, 1733, 1433, 1209, 1100, 1055, 1029, 727, 690, 510 cm–1. HRMS (EI): m/z calcd for C21H19O2P [M – BH3]+: 334.1117; found: 334.1116.
  • 10 The reaction of methyl butyrate with chlorodicyclohexylphosphine provided, under the standard reaction conditions, methyl 2-ethyl dicyclohexylphosphinoacetate–borane (1a) in 10% isolated yield. The yield of this reaction has not been optimized. For analytical data, see the Supporting Information.
  • 11 Greene’s Protective Groups in Organic Synthesis . 5th ed., Wuts PG. M. J. Wiley and Sons; New York: 2014
  • 12 Allan KM, Spencer JL. Org. Biomol. Chem. 2014; 12: 956
  • 13 Ciardi C, Romerosa A, Serrano-Ruiz M, Gonsalvi L, Peruzzini M, Reginato G. J. Org. Chem. 2007; 72: 7787
  • 14 McKinstry L, Livinghouse T. Tetrahedron 1995; 51: 7655
  • 15 Arribas I, Vargas S, Rubio M, Suárez A, Domene C, Alvarez E, Pizzano A. Organometallics 2010; 29: 5791
  • 16 Xiao K.-J, Lin DW, Miura M, Zhu R.-Y, Gong W, Wasa M, Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 8138
  • 17 CCDC 1489246 contains the supplementary crystallographic data for for compound 11. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 18 Hill WE, Taylor JG, Falshaw CP, King TJ, Beagley B, Tonge DM, Pritchard RG, McAuliffe CA. J. Chem. Soc., Dalton Trans. 1986; 2289