Synthesis 2017; 49(16): 3643-3653
DOI: 10.1055/s-0036-1588177
paper
© Georg Thieme Verlag Stuttgart · New York

Highly Efficient Synthesis of Multi-Substituted Allenes from Propargyl­ Acetates and Organoaluminum Reagents Mediated by Palladium

Zhen Zhang
College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, P. R. of China   Email: lqhchem@163.com   Email: 21900049@swun.edu.cn
,
Xuebei Shao
College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, P. R. of China   Email: lqhchem@163.com   Email: 21900049@swun.edu.cn
,
Gang Zhang
College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, P. R. of China   Email: lqhchem@163.com   Email: 21900049@swun.edu.cn
,
Qinghan Li*
College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, P. R. of China   Email: lqhchem@163.com   Email: 21900049@swun.edu.cn
,
Xinying Li
College of Chemistry and Environmental Protection Engineering, Southwest University for Nationalities, Chengdu 610041, P. R. of China   Email: lqhchem@163.com   Email: 21900049@swun.edu.cn
› Author Affiliations
Supported by: Sichuan Provincial Department of Science and Technology support program (2015NZ0033)
Supported by: Southwest University for Nationalities graduate student innovation funds (CX2016SZ052)
Further Information

Publication History

Received: 18 February 2017

Accepted after revision: 28 March 2017

Publication Date:
04 May 2017 (online)


Abstract

A simple and mild catalytic SN2′ substitution reaction of propargyl acetates with organoaluminum reagents is reported. The SN2′ substitution reaction of propargyl acetates with organoaluminum reagents mediated by Pd(PhP3)2Cl2 (1 mol%)/PPh3 (2 mol%)/K2CO3 in tetrahydrofuran at 60 °C for 3–4 hours afforded the corresponding multi-substituted allenes in good yields (up to 94%) with high selectivities (up to 99%). The process was simple and easily performed, which offers an efficient method to synthesize the multi-substituted allene derivatives.

Supporting Information

 
  • References

    • 1a Modern Allene Chemistry. Vol. 1 and 2. Krause N. Hashmi AS. K. Wiley-VCH; Weinheim: 2004
    • 1b Ma SM. Palladium-Catalyzed Two- or Three-Component Cyclization of Functionalized Allenes. In Palladium in Organic Synthesis. Tsuji J. Springer; Berlin: 2005: 183-210
    • 1c Brasholz M. Reissig H.-U. Zimmer R. Acc. Chem. Res. 2009; 42: 45
    • 1d Ye JT. Ma SM. Acc. Chem. Res. 2014; 47: 989
    • 1e Bruneau C. Renaud J.-L. Allenes and Cumulenes. In Comprehensive Organic Functional Group Transformations II. Vol. 1. Katritzky AR. Taylor RJ. K.. Cossy J. Elsevier; Oxford: 2005: 1019−1081

      For some recent reviews on the chemistry of allenes, see:
    • 2a Zimmer R. Dinesh CU. Nandanan E. Khan FA. Chem. Rev. 2000; 100: 3067
    • 2b Lu X. Zhang C. Xu Z. Acc. Chem. Res. 2001; 34: 535
    • 2c Bates RW. Satcharoen V. Chem. Soc. Rev. 2002; 31: 12
    • 2d Ma SM. Acc. Chem. Res. 2003; 36: 701
    • 2e Brandsma L. Nedolya NA. Synthesis 2004; 735
    • 2f Ma SM. Chem. Rev. 2005; 105: 2829
    • 2g Ma SM. Aldrichimica Acta 2007; 40: 91
    • 2h Ma SM. Acc. Chem. Res. 2009; 42: 1679
    • 2i Yu SC. Ma SM. Angew. Chem. Int. Ed. 2012; 51: 3074 ; Angew. Chem. 2012, 128, 3128
    • 2j Alcaide B. Almendros P. Cembellín S. Martinez del Campo T. Fernández I. Chem. Commun. 2013; 49: 1282
    • 2k Alcaide B. Almendros P. Alonso JM. Fernández I. J. Org. Chem. 2013; 78: 6688
    • 2l Lechel T. Pfrengle F. Reissig HU. Zimmer R. ChemCatChem 2013; 5: 2100
    • 2m Alcaide B. Almendros P. Aragoncillo C. Chem. Soc. Res. 2014; 43: 3106
    • 2n Lledó A. Pla-Quintana A. Roglans A. Chem. Soc. Res. 2016; 45: 2010

      For a review on the natural products and pharmaceuticals containing allene unit(s), see:
    • 3a Hoffmann-Röder A. Krause N. Angew. Chem. Int. Ed. 2004; 43: 1196 ; Angew. Chem. 2004, 116, 1216
    • 3b Kim H. Williams LJ. Curr. Opin. Drug Discovery Dev. 2008; 11: 870
    • 3c Ugurchieva TM. Veselovsky VV. Russ. Chem. Rev. 2009; 78: 337
    • 3d Saito N. Tanaka Y. Sato Y. Org. Lett. 2009; 11: 4124
    • 4a Leclère M. Fallis AG. Angew. Chem. Int. Ed. 2008; 47: 568 ; Angew. Chem. 2008, 120, 578
    • 4b Rivera-Fuentes P. Diederich F. Angew. Chem. Int. Ed. 2012; 51: 2818 ; Angew. Chem. 2012, 124, 2872

      For recent reviews on the synthesis of allenes, see:
    • 5a Sydnes LK. Chem. Rev. 2003; 103: 1133
    • 5b Krause N. Hoffmann-Röder A. Tetrahedron 2004; 60: 11671
    • 5c Brummond KM. Deforrest JE. Synthesis 2007; 795
    • 5d Krause N. Belting V. Deutsch C. Erdsack J. Fan H. Gockel B. Hoffmann-Röder A. Morita N. Volz F. Pure Appl. Chem. 2008; 80: 1063
    • 5e Ogasawara M. Tetrahedron: Asymmetry 2009; 20: 259
    • 5f Yu SC. Ma SM. Chem. Commun. 2011; 47: 5384
    • 5g Neff RK. Frantz DE. ACS Catal. 2014; 4: 519

      For selected recent reports on the synthesis of allenes, see:
    • 6a Kolakowski RV. Bolte B. Odabachian Y. Gagosz F. J. Am. Chem. Soc. 2010; 132: 7294
    • 6b Kalek M. Stawinski J. Adv. Synth. Catal. 2011; 353: 1741
    • 6c Xiao Q. Xia Y. Li H. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2011; 50: 1114 ; Angew. Chem. 2011, 123, 1146
    • 6d Yu XZ. Zhang JL. Adv. Synth. Catal. 2011; 353: 1265
    • 6e Hossain ML. Ye F. Zhang Y. Wang JB. J. Org. Chem. 2013; 78: 1236
    • 6f Hashimoto T. Sakata K. Tamakuni F. Dutton MJ. Maruoka K. Nat. Chem. 2013; 5: 240
    • 6g Wu Z. Berhal F. Zhao MM. Zhang ZG. Ayad T. Ratovelomanana-Vidal V. ACS Catal. 2014; 4: 44
    • 6h Li QH. Jeng JY. Gau HM. Eur. J. Org. Chem. 2014; 7916
    • 6i Li QH. Liao JW. Huang YL. Chiang RT. Gau HM. Org. Biomol. Chem. 2014; 12: 7634
    • 6j Gangadhararao G. Kumara Swamy KC. Tetrahedron 2014; 70: 2643
    • 6k Wei W. Wen JW. Yang DS. Guo MY. Wang YY. You JM. Wang H. Chem. Commun. 2015; 51: 768
    • 6l Tang XJ. Han YL. Ma SM. Org. Lett. 2015; 18: 1176
    • 6m Ruchti J. Carreria EM. Org. Lett. 2016; 18: 2174
    • 6n Periasamy M. Reddy PO. Satyanarayana I. Mohan L. Athukuri Edukondalu A. J. Org. Chem. 2016; 81: 987
    • 7a Ma SM. Yu SC. Yin SH. J. Org. Chem. 2003; 68: 8996
    • 7b Yokota M. Fuchibe K. Ueda M. Mayumi Y. Ichikawa J. Org. Lett. 2009; 11: 3994
    • 8a Brossat M. Heck MP. Mioskowski C. J. Org. Chem. 2007; 72: 5938
    • 8b Phadke N. Findlater M. Organometallics 2014; 33: 16
    • 9a Kuang JK. Ma SM. J. Am. Chem. Soc. 2010; 132: 1786
    • 9b Jiang GJ. Zheng QH. Dou M. Zhuo LG. Meng W. Yu ZX. J. Org. Chem. 2013; 78: 11783
    • 9c Gurubrahamam R. Periasamy M. J. Org. Chem. 2013; 78: 1463
  • 10 Wang YL. Zhang WL. Ma SM. J. Am. Chem. Soc. 2013; 135: 11517
    • 11a Deutsch C. Lipshutz BH. Krause N. Angew. Chem. Int. Ed. 2007; 46: 1650 ; Angew. Chem. 2007, 119, 1677
    • 11b Ito H. Sasaki Y. Sawamura M. J. Am. Chem. Soc. 2008; 130: 15774
    • 11c Li HL. Müller D. Guénée L. Alexakis A. Org. Lett. 2013; 15: 334
    • 12a Li Q.-H. Ding Y. Yang X.-J. Chin. Chem. Lett. 2014; 25: 1296
    • 12b Li Q.-H. Ding Y. Huang NW. Chin. Chem. Lett. 2014; 25: 1469
  • 13 Mahrwald R. Quint S. Tetrahedron 2000; 56: 7463
  • 14 Kessler SN. Bäckvall JE. Angew. Chem. Int. Ed. 2016; 55: 3734 ; Angew. Chem. 2016, 128, 3798