Synlett 2017; 28(12): 1473-1477
DOI: 10.1055/s-0036-1588172
letter
© Georg Thieme Verlag Stuttgart · New York

A Nucleophilic Activation of Carboxylic Acids by Proline: Oxa-Michael Addition to Methyl Vinyl Ketone under Solvent-Free Conditions

Ajit Kumar Jha, Heena Inani, Srinivasan Easwar*
  • Department of Chemistry, Central University of Rajasthan, NH-8, Bandarsindri, Distt. Ajmer, Rajasthan 305817, India   Email: easwar.srinivasan@curaj.ac.in
Further Information

Publication History

Received: 07 February 2017

Accepted after revision: 17 March 2017

Publication Date:
10 April 2017 (eFirst)

Abstract

A serendipitous nucleophilic activation of carboxylic acids by proline helped to achieve a direct hydrocarboxylation of methyl vinyl ketone at 60 °C under solvent-free conditions. A variety of carboxylic acids were used successfully in this oxa-Michael addition, affording useful 4-acyloxy-2-butanones in moderate yields. The reactions are carried out under solvent-free conditions, and the products are isolated in high purity by a simple work-up procedure without any need for column chromatographic purification, imparting a green quotient to the protocol. A heterodimeric non-covalent interaction between the amino acid and the carboxylic acid appears to be the most plausible mechanistic interpretation for the nucleophilic activation; additionally, the possible activation of the Michael acceptor by iminium ion formation presents an interesting case of proline acting as a bifunctional catalyst.

Supporting Information

 
  • References and Notes

  • 1 Mitsunobu O. Yamada M. Bull. Chem. Soc. Jpn. 1967; 40: 2380
    • 2a Monaco MR. Poladura B. Diaz de los Bernardos M. Leutzsch M. Goddard R. List B. Angew. Chem. Int. Ed. 2014; 53: 7063
    • 2b Monaco MR. Prevost S. List B. Angew. Chem. Int. Ed. 2014; 53: 8142
    • 2c Monaco MR. Prevost S. List B. J. Am. Chem. Soc. 2014; 136: 16982
  • 3 Monaco MR. Pupo G. List B. Synlett 2016; 27: 1027
    • 4a Heravi MM. Hajiabbasi P. Mol. Divers. 2014; 18: 411
    • 4b Nising CF. Brase S. Chem. Soc. Rev. 2008; 37: 1218
    • 4c Nising CF. Brase S. Chem. Soc. Rev. 2012; 41: 988
  • 5 Schetter B. Mahrwald R. Angew. Chem. Int. Ed. 2006; 45: 7506
    • 6a da Penha ET. Forni JA. Biajoli AF. P. Correia CR. D. Tetrahedron Lett. 2011; 52: 6342
    • 6b Mishra NK. Park J. Choi M. Sharma S. Jo H. Jeong T. Han S. Kim S. Kim IS. Eur. J. Org. Chem. 2016; 3076
    • 6c Youn SW. Song HS. Park JH. Org. Biomol. Chem. 2014; 12: 2388
    • 6d Youn SW. Song HS. Park JH. Org. Lett. 2014; 16: 1028
    • 6e Parhi B. Maity S. Ghorai P. Org. Lett. 2016; 18: 5220
    • 6f Nair V. Abhilash KG. Synthesis 2005; 1967
  • 7 Weisleder D. Friedman M. J. Org. Chem. 1968; 33: 3542
  • 8 Itoh K. Utsukihara T. Funayama K. Sakamaki H. Kanamori M. Takahashi TT. Saitoh Y. Matsushita M. He L. Hashimoto C. Sugiyama T. Horiuchi CA. Appl. Organomet. Chem. 2007; 21: 1029
    • 9a Nakatsuka T. Iwata H. Tanaka R. Imajo S. Ishiguro M. J. Chem. Soc., Chem. Commun. 1991; 662
    • 9b Tanaka R. Iwata H. Ishiguro M. J. Antibiot. 1990; 43: 1608
    • 9c Mori K. Miyake M. Tetrahedron 1987; 43: 2229
    • 9d Ohloff G. Giersch W. Decorzant R. Buechi G. Helv. Chim. Acta 1980; 63: 1589
    • 9e Ferreira JT. B. Ferreira B. Simonelli F. Tetrahedron 1990; 46: 6311
    • 9f Choi VM. F. Elliot JD. Johnson WS. Tetrahedron Lett. 1984; 25: 591
    • 10a Cavestri RC. Fedor LR. J. Am. Chem. Soc. 1970; 92: 4610
    • 10b Lam HW. Joensuu PM. Org. Lett. 2005; 7: 4225
    • 10c Kostler K. Rosemeyer H. Molecules 2009; 14: 4326
  • 11 Achini R. Muller B. Tamm C. Helv. Chim. Acta 1974; 57: 1442
  • 12 Asensio G. Castellano G. Mello R. Gonzalez Nunez ME. J. Org. Chem. 1996; 61: 5564
  • 13 Zhao Y. Yim W.-L. Tan CK. Yeung Y.-Y. Org. Lett. 2011; 13: 4308
  • 14 Hernandez JG. Juaristi E. Chem. Commun. 2012; 48: 5396
  • 15 Inani H. Jha AK. Easwar S. Synlett 2017; 28: 128
  • 16 For a review on the role of water in organocatalytic reactions, see: Giacalone F. Gruttadauria M. Water in Organocatalytic Reactions. In Comprehensive Enantioselective Organocatalysis: Catalysts, Reactions, and Applications. 1st ed.; Dalko PI. Wiley-VCH; Weinheim; 2013: 673
    • 17a Jung Y. Marcus RA. J. Am. Chem. Soc. 2007; 129: 5492
    • 17b Zotova N. Franzke A. Armstrong A. Blackmond DG. J. Am. Chem. Soc. 2007; 129: 15100
  • 18 Proline (0.5 mmol) was added to methyl vinyl ketone (1; 3.0 mmol) in a 5 mL vial and stirred for 5 min at room temperature. p-Chlorobenzoic acid (2a; 1.0 mmol) was then added, and the reaction mixture was stirred at 60 °C for 15 h. The reaction mixture was then allowed to cool to room temperature, diluted with EtOAc (4 mL) and washed with 10% aqueous NaHCO3 (6 mL × 3). The organic layer was dried over Na2SO4 and concentrated in vacuo to isolate the pure product 3a 12 (140 mg, 62%) as a cream-coloured solid. 1H NMR (CDCl3, 500 MHz): δ = 7.93 (d, J = 8.8 Hz, 2 H), 7.40 (d, J = 8.8 Hz, 2 H), 4.58 (t, J = 6.3 Hz, 2 H), 2.90 (t, J = 6.3 Hz, 2 H), 2.23 (s, 3 H). 13C NMR (CDCl3, 125 MHz): δ = 205.57, 165.55, 139.50, 131.00, 128.73, 128.37, 60.01, 42.27, 30.32.
  • 19 Maslat AO. Al-Hamdany R. Faftah Z. Mahrath AJ. Abussaud MJ. Toxicol. Environ. Chem. 2003; 85: 149
  • 20 Reactions attempted with the other enones have not been tabulated.