Synlett 2017; 28(11): 1305-1309
DOI: 10.1055/s-0036-1588151
cluster
© Georg Thieme Verlag Stuttgart · New York

Oxidative Kinetic Resolution of cis-Fused Tricyclic 1-Tetralone Derivatives by Guanidine–Bisurea Bifunctional Organocatalyst

Minami Odagi*
Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588, Tokyo, Japan   Email: [email protected]   Email: [email protected]
,
Keisuke Hosoya
Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588, Tokyo, Japan   Email: [email protected]   Email: [email protected]
,
Yoshiharu Yamamoto
Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588, Tokyo, Japan   Email: [email protected]   Email: [email protected]
,
Kazuo Nagasawa*
Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588, Tokyo, Japan   Email: [email protected]   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 28 December 2016

Accepted after revision: 02 February 2017

Publication Date:
24 February 2017 (online)


Abstract

We present an enantioselective synthesis of cis-fused tricyclic 1-tetralones via oxidative kinetic resolution in the presence of cumene hydroperoxide (CHP) and guanidine–bisurea bifunctional organocatalyst. This reaction affords the corresponding α-hydroxylation products together with unreacted tetralones in good to high enantioselectivity, with s values as high as 42. The reaction was successfully applied for the synthesis of the core structure of a kainoid derivative, 4-(2-methoxyphenyl)-2-carboxy-3-pyrrolidineacetic acid (MFPA).

Supporting Information

 
  • References and Notes

  • 1 Neumeyer JL, Bidlack JM, Zong R, Bakthavachalam V, Gao P, Cohen DJ, Negus SS, Mello NK. J. Med. Chem. 2000; 43: 114-114
  • 2 Wellington KD, Cambie RC, Rutledge PS, Bergquist PR. J. Nat. Prod. 2000; 63: 79-79
  • 3 Singh AJ, Dattelbaum JD, Field JJ, Smart Z, Woolly EF, Barber JM, Heathcott R, Miller JH, Northcote PT. Org. Biomol. Chem. 2013; 11: 8041-8041
  • 4 Yan YM, Ai J, Zhou LL, Chung AC, Li R, Nie J, Fang P, Wang XL, Luo J, Hu Q, Hou FF, Cheng YX. Org. Lett. 2013; 15: 5488-5488
  • 5 Nicolaou KC, Gray D, Tae J. Angew. Chem. Int. Ed. 2001; 40: 3675-3675
  • 6 Nicolaou KC, Gray D, Tae J. Angew. Chem. Int. Ed. 2001; 40: 3679-3679
  • 7 Uenoyama Y, Tsukida M, Doi T, Ryu I, Studer A. Org. Lett. 2005; 7: 2985-2985
  • 8 Sato T, Tamura K. Tetrahedron Lett. 1984; 25: 1821-1821
  • 9 Duthaler RO, Ginsburg D. Helv. Chim. Acta 1986; 69: 1559-1559
  • 10 Oh SH, Tamura K, Sato T. Tetrahedron 1992; 48: 9687-9687
  • 11 Ramana MM. V, Potnis PV. Synthesis 1996; 1090-1090
  • 12 Odagi M, Furukori K, Watanabe T, Nagasawa K. Chem. Eur. J. 2013; 19: 16740-16740
  • 13 Odagi M, Furukori K, Yamamoto Y, Sato M, Iida K, Yamanaka M, Nagasawa K. J. Am. Chem. Soc. 2015; 137: 1909-1909
  • 14 In the case of rac-4d, TS-4d-I is unfavorable compared to TS-4d-II (Scheme 5) due to steric repulsion between the cyclopentane moiety and methoxy group on the aromatic ring. On the other hand, TS-4d-II also exhibits steric repulsion between CHP and the carbon atom at C3 in rac-4d.
  • 15 We have reported DFT calculation studies of the transition states of oxidative kinetic resolution.13 Based upon the calculations, we proposed transition state models of oxidation for rac-4i and rac-4j in Scheme 3 (TS-cis-I–IV and TS-trans-I–IV).
    • 16a Hashimoto K, Horikawa M, Shirahama H. Tetrahedron Lett. 1990; 31: 7047-7047
    • 16b Hashimoto K, Shirahama H. Tetrahedron Lett. 1991; 32: 2625-2625
    • 17a Demir AS, Aybey A. Tetrahedron 2008; 64: 11256-11256
    • 17b Ahmed A, Bragg RA, Clayden J, Tchabanenko K. Tetrahedron Lett. 2001; 42: 3407-3407